Loading…

The regular part of sectorial forms

We study the regular part of a densely defined sectorial form, first in the abstract setting and then under mild conditions for a differential sectorial form. The regular part of the latter turns out to be again a differential sectorial form. Moreover, we characterize when taking the real part of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of evolution equations 2011-12, Vol.11 (4), p.907-924
Main Authors: ter Elst, A.F.M., Sauter, Manfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63
cites cdi_FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63
container_end_page 924
container_issue 4
container_start_page 907
container_title Journal of evolution equations
container_volume 11
creator ter Elst, A.F.M.
Sauter, Manfred
description We study the regular part of a densely defined sectorial form, first in the abstract setting and then under mild conditions for a differential sectorial form. The regular part of the latter turns out to be again a differential sectorial form. Moreover, we characterize when taking the real part of a differential sectorial form commutes with taking the regular part. An example shows that these two operations do not commute in general.
doi_str_mv 10.1007/s00028-011-0116-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00028_011_0116_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00028_011_0116_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmPwANwqcQ7YSdqkRzQBQ5rEZZyjLLXHpm6dku7A29OqcOXwyz74s_0JcY_wiAD2KQOAchIQx1QSLsQMjTJSK1CXfz3W9bW4yXkPgLZ05Uw8rL-oSLQ9tyEVp5D6ouMiU-y7tAttwV065FtxxaHNdPdb5-Lz9WW9WMrVx9v74nklo3Kul0azaaqadc1NQxyASYNVgULjquHaxgVjcWNt1IqpcYzOaSyBLEZlqNJzgdPemLqcE7E_pd0hpG-P4EdLP1n6wXBM5WFg1MTkYfa4peT33Tkdhzf_gX4AMHVT1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The regular part of sectorial forms</title><source>Springer Nature</source><creator>ter Elst, A.F.M. ; Sauter, Manfred</creator><creatorcontrib>ter Elst, A.F.M. ; Sauter, Manfred</creatorcontrib><description>We study the regular part of a densely defined sectorial form, first in the abstract setting and then under mild conditions for a differential sectorial form. The regular part of the latter turns out to be again a differential sectorial form. Moreover, we characterize when taking the real part of a differential sectorial form commutes with taking the regular part. An example shows that these two operations do not commute in general.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-011-0116-0</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of evolution equations, 2011-12, Vol.11 (4), p.907-924</ispartof><rights>Springer Basel AG 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63</citedby><cites>FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ter Elst, A.F.M.</creatorcontrib><creatorcontrib>Sauter, Manfred</creatorcontrib><title>The regular part of sectorial forms</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>We study the regular part of a densely defined sectorial form, first in the abstract setting and then under mild conditions for a differential sectorial form. The regular part of the latter turns out to be again a differential sectorial form. Moreover, we characterize when taking the real part of a differential sectorial form commutes with taking the regular part. An example shows that these two operations do not commute in general.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmPwANwqcQ7YSdqkRzQBQ5rEZZyjLLXHpm6dku7A29OqcOXwyz74s_0JcY_wiAD2KQOAchIQx1QSLsQMjTJSK1CXfz3W9bW4yXkPgLZ05Uw8rL-oSLQ9tyEVp5D6ouMiU-y7tAttwV065FtxxaHNdPdb5-Lz9WW9WMrVx9v74nklo3Kul0azaaqadc1NQxyASYNVgULjquHaxgVjcWNt1IqpcYzOaSyBLEZlqNJzgdPemLqcE7E_pd0hpG-P4EdLP1n6wXBM5WFg1MTkYfa4peT33Tkdhzf_gX4AMHVT1Q</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>ter Elst, A.F.M.</creator><creator>Sauter, Manfred</creator><general>SP Birkhäuser Verlag Basel</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111201</creationdate><title>The regular part of sectorial forms</title><author>ter Elst, A.F.M. ; Sauter, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ter Elst, A.F.M.</creatorcontrib><creatorcontrib>Sauter, Manfred</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ter Elst, A.F.M.</au><au>Sauter, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regular part of sectorial forms</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>11</volume><issue>4</issue><spage>907</spage><epage>924</epage><pages>907-924</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>We study the regular part of a densely defined sectorial form, first in the abstract setting and then under mild conditions for a differential sectorial form. The regular part of the latter turns out to be again a differential sectorial form. Moreover, we characterize when taking the real part of a differential sectorial form commutes with taking the regular part. An example shows that these two operations do not commute in general.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s00028-011-0116-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-3199
ispartof Journal of evolution equations, 2011-12, Vol.11 (4), p.907-924
issn 1424-3199
1424-3202
language eng
recordid cdi_crossref_primary_10_1007_s00028_011_0116_0
source Springer Nature
subjects Analysis
Mathematics
Mathematics and Statistics
title The regular part of sectorial forms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regular%20part%20of%20sectorial%20forms&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=ter%20Elst,%20A.F.M.&rft.date=2011-12-01&rft.volume=11&rft.issue=4&rft.spage=907&rft.epage=924&rft.pages=907-924&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-011-0116-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s00028_011_0116_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-43f4d69f39fddefa0fe3072aead86758b8a471b77c32fed8f1883150e71c24e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true