Loading…

Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction

Let S be a hypersurface in which is the graph of a smooth, finite type function φ , and let μ = ρ   dσ be a surface carried measure on S , where dσ denotes the surface element on S and ρ a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform of μ , wh...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of fourier analysis and applications 2011-12, Vol.17 (6), p.1292-1332
Main Authors: Ikromov, Isroil A., Müller, Detlef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43
cites cdi_FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43
container_end_page 1332
container_issue 6
container_start_page 1292
container_title The Journal of fourier analysis and applications
container_volume 17
creator Ikromov, Isroil A.
Müller, Detlef
description Let S be a hypersurface in which is the graph of a smooth, finite type function φ , and let μ = ρ   dσ be a surface carried measure on S , where dσ denotes the surface element on S and ρ a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform of μ , which are sharp except for the case where the principal face of the Newton polyhedron of φ , when expressed in adapted coordinates, is unbounded. As an application, we prove a sharp L p - L 2 Fourier restriction theorem for S in the case where the original coordinates are adapted to φ . This improves on earlier joint work with M. Kempe.
doi_str_mv 10.1007/s00041-011-9191-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00041_011_9191_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00041_011_9191_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHa-QMCT2HG8rKoWKhUhQbu2HD_AVetUdrronmtwOU6CQxFLFqN5fqOZH6FbIHdACL9PhBAKBQEoBAgo6BkaAaugYA2D8xyTWuS4FpfoKqUNISVUvBqh4zp418UdnqXe71RvE84p7t8tnneH6G3Eq6hC-pnpHH49RKe0xVMVc9PgJ6vSIWbKB_z18VlhFUw2PNnvt16r3ncB993frheb-uj1UL5GF05tk7359WO0ns9W08di-fywmE6WhQYhaGEaYcrWUU4Nr2nJW9K0jPEGdFMKMI1hqtWCtsK1jBMwwIk2kAFV1c4oWo0RnPbq2KUUrZP7mD-NRwlEDtrJk3YyaycH7eTAlCcm5dnwZqPc5AdCPvMf6BtO_XP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction</title><source>Springer Nature</source><creator>Ikromov, Isroil A. ; Müller, Detlef</creator><creatorcontrib>Ikromov, Isroil A. ; Müller, Detlef</creatorcontrib><description>Let S be a hypersurface in which is the graph of a smooth, finite type function φ , and let μ = ρ   dσ be a surface carried measure on S , where dσ denotes the surface element on S and ρ a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform of μ , which are sharp except for the case where the principal face of the Newton polyhedron of φ , when expressed in adapted coordinates, is unbounded. As an application, we prove a sharp L p - L 2 Fourier restriction theorem for S in the case where the original coordinates are adapted to φ . This improves on earlier joint work with M. Kempe.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-011-9191-4</identifier><language>eng</language><publisher>Boston: SP Birkhäuser Verlag Boston</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2011-12, Vol.17 (6), p.1292-1332</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43</citedby><cites>FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ikromov, Isroil A.</creatorcontrib><creatorcontrib>Müller, Detlef</creatorcontrib><title>Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Let S be a hypersurface in which is the graph of a smooth, finite type function φ , and let μ = ρ   dσ be a surface carried measure on S , where dσ denotes the surface element on S and ρ a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform of μ , which are sharp except for the case where the principal face of the Newton polyhedron of φ , when expressed in adapted coordinates, is unbounded. As an application, we prove a sharp L p - L 2 Fourier restriction theorem for S in the case where the original coordinates are adapted to φ . This improves on earlier joint work with M. Kempe.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHa-QMCT2HG8rKoWKhUhQbu2HD_AVetUdrronmtwOU6CQxFLFqN5fqOZH6FbIHdACL9PhBAKBQEoBAgo6BkaAaugYA2D8xyTWuS4FpfoKqUNISVUvBqh4zp418UdnqXe71RvE84p7t8tnneH6G3Eq6hC-pnpHH49RKe0xVMVc9PgJ6vSIWbKB_z18VlhFUw2PNnvt16r3ncB993frheb-uj1UL5GF05tk7359WO0ns9W08di-fywmE6WhQYhaGEaYcrWUU4Nr2nJW9K0jPEGdFMKMI1hqtWCtsK1jBMwwIk2kAFV1c4oWo0RnPbq2KUUrZP7mD-NRwlEDtrJk3YyaycH7eTAlCcm5dnwZqPc5AdCPvMf6BtO_XP0</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Ikromov, Isroil A.</creator><creator>Müller, Detlef</creator><general>SP Birkhäuser Verlag Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201112</creationdate><title>Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction</title><author>Ikromov, Isroil A. ; Müller, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikromov, Isroil A.</creatorcontrib><creatorcontrib>Müller, Detlef</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikromov, Isroil A.</au><au>Müller, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2011-12</date><risdate>2011</risdate><volume>17</volume><issue>6</issue><spage>1292</spage><epage>1332</epage><pages>1292-1332</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Let S be a hypersurface in which is the graph of a smooth, finite type function φ , and let μ = ρ   dσ be a surface carried measure on S , where dσ denotes the surface element on S and ρ a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform of μ , which are sharp except for the case where the principal face of the Newton polyhedron of φ , when expressed in adapted coordinates, is unbounded. As an application, we prove a sharp L p - L 2 Fourier restriction theorem for S in the case where the original coordinates are adapted to φ . This improves on earlier joint work with M. Kempe.</abstract><cop>Boston</cop><pub>SP Birkhäuser Verlag Boston</pub><doi>10.1007/s00041-011-9191-4</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2011-12, Vol.17 (6), p.1292-1332
issn 1069-5869
1531-5851
language eng
recordid cdi_crossref_primary_10_1007_s00041_011_9191_4
source Springer Nature
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title Uniform Estimates for the Fourier Transform of Surface Carried Measures in ℝ3 and an Application to Fourier Restriction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Estimates%20for%20the%20Fourier%20Transform%20of%20Surface%20Carried%20Measures%20in%20%E2%84%9D3%20and%20an%20Application%20to%20Fourier%20Restriction&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Ikromov,%20Isroil%20A.&rft.date=2011-12&rft.volume=17&rft.issue=6&rft.spage=1292&rft.epage=1332&rft.pages=1292-1332&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-011-9191-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s00041_011_9191_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1994-d89d2bf474d76427b08b55781c8291d8d5abc94b9fb5701d170cd1bf4a36fda43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true