Loading…

D-optimal designs for polynomial regression with exponential weight function

Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree o...

Full description

Saved in:
Bibliographic Details
Published in:Metrika 2009-11, Vol.70 (3), p.339-354
Main Authors: Chang, Fu-Chuen, Chang, Hsiu-Ching, Wang, Sheng-Shian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3
cites cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3
container_end_page 354
container_issue 3
container_start_page 339
container_title Metrika
container_volume 70
creator Chang, Fu-Chuen
Chang, Hsiu-Ching
Wang, Sheng-Shian
description Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.
doi_str_mv 10.1007/s00184-008-0195-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00184_008_0195_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00184_008_0195_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLf-gehMkn4dZf1YoeBFwVto06TbpZuUpMu6_94s9expYOZ5h5mHkHuEBwQoHgMAloIClBSwyii7IAkKntGK5d-XJAFgOUXOs2tyE8Iu0kXOWELqZ-qmedg3Y9rpMPQ2pMb5dHLjybr9ENte916HMDibHod5m-qfyVlt5_PsqId-O6fmYNUcgVtyZZox6Lu_uiJfry-f6w2tP97e1081VRyrmSowhhuFAjBeVbVKibLoKqOMQGN0l-VYVq3IeVEWyLvGANcRFhq7Asu25SuCy17lXQheGzn5-II_SQR51iEXHTLqkGcdksUMWzIhsrbXXu7cwdt45j-hXwzlZEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>D-optimal designs for polynomial regression with exponential weight function</title><source>Springer Nature</source><creator>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</creator><creatorcontrib>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</creatorcontrib><description>Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-008-0195-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Metrika, 2009-11, Vol.70 (3), p.339-354</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</citedby><cites>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Fu-Chuen</creatorcontrib><creatorcontrib>Chang, Hsiu-Ching</creatorcontrib><creatorcontrib>Wang, Sheng-Shian</creatorcontrib><title>D-optimal designs for polynomial regression with exponential weight function</title><title>Metrika</title><addtitle>Metrika</addtitle><description>Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLf-gehMkn4dZf1YoeBFwVto06TbpZuUpMu6_94s9expYOZ5h5mHkHuEBwQoHgMAloIClBSwyii7IAkKntGK5d-XJAFgOUXOs2tyE8Iu0kXOWELqZ-qmedg3Y9rpMPQ2pMb5dHLjybr9ENte916HMDibHod5m-qfyVlt5_PsqId-O6fmYNUcgVtyZZox6Lu_uiJfry-f6w2tP97e1081VRyrmSowhhuFAjBeVbVKibLoKqOMQGN0l-VYVq3IeVEWyLvGANcRFhq7Asu25SuCy17lXQheGzn5-II_SQR51iEXHTLqkGcdksUMWzIhsrbXXu7cwdt45j-hXwzlZEs</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Chang, Fu-Chuen</creator><creator>Chang, Hsiu-Ching</creator><creator>Wang, Sheng-Shian</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>D-optimal designs for polynomial regression with exponential weight function</title><author>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Fu-Chuen</creatorcontrib><creatorcontrib>Chang, Hsiu-Ching</creatorcontrib><creatorcontrib>Wang, Sheng-Shian</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Fu-Chuen</au><au>Chang, Hsiu-Ching</au><au>Wang, Sheng-Shian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-optimal designs for polynomial regression with exponential weight function</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>70</volume><issue>3</issue><spage>339</spage><epage>354</epage><pages>339-354</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00184-008-0195-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2009-11, Vol.70 (3), p.339-354
issn 0026-1335
1435-926X
language eng
recordid cdi_crossref_primary_10_1007_s00184_008_0195_2
source Springer Nature
subjects Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Probability Theory and Stochastic Processes
Statistics
title D-optimal designs for polynomial regression with exponential weight function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-optimal%20designs%20for%20polynomial%20regression%20with%20exponential%20weight%20function&rft.jtitle=Metrika&rft.au=Chang,%20Fu-Chuen&rft.date=2009-11-01&rft.volume=70&rft.issue=3&rft.spage=339&rft.epage=354&rft.pages=339-354&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-008-0195-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s00184_008_0195_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true