Loading…
D-optimal designs for polynomial regression with exponential weight function
Weighted polynomial regression with exponential weight function on an interval is considered. The D -optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree o...
Saved in:
Published in: | Metrika 2009-11, Vol.70 (3), p.339-354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3 |
container_end_page | 354 |
container_issue | 3 |
container_start_page | 339 |
container_title | Metrika |
container_volume | 70 |
creator | Chang, Fu-Chuen Chang, Hsiu-Ching Wang, Sheng-Shian |
description | Weighted polynomial regression with exponential weight function on an interval is considered. The
D
-optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made. |
doi_str_mv | 10.1007/s00184-008-0195-2 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00184_008_0195_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00184_008_0195_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLf-gehMkn4dZf1YoeBFwVto06TbpZuUpMu6_94s9expYOZ5h5mHkHuEBwQoHgMAloIClBSwyii7IAkKntGK5d-XJAFgOUXOs2tyE8Iu0kXOWELqZ-qmedg3Y9rpMPQ2pMb5dHLjybr9ENte916HMDibHod5m-qfyVlt5_PsqId-O6fmYNUcgVtyZZox6Lu_uiJfry-f6w2tP97e1081VRyrmSowhhuFAjBeVbVKibLoKqOMQGN0l-VYVq3IeVEWyLvGANcRFhq7Asu25SuCy17lXQheGzn5-II_SQR51iEXHTLqkGcdksUMWzIhsrbXXu7cwdt45j-hXwzlZEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>D-optimal designs for polynomial regression with exponential weight function</title><source>Springer Nature</source><creator>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</creator><creatorcontrib>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</creatorcontrib><description>Weighted polynomial regression with exponential weight function on an interval is considered. The
D
-optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-008-0195-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Metrika, 2009-11, Vol.70 (3), p.339-354</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</citedby><cites>FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Fu-Chuen</creatorcontrib><creatorcontrib>Chang, Hsiu-Ching</creatorcontrib><creatorcontrib>Wang, Sheng-Shian</creatorcontrib><title>D-optimal designs for polynomial regression with exponential weight function</title><title>Metrika</title><addtitle>Metrika</addtitle><description>Weighted polynomial regression with exponential weight function on an interval is considered. The
D
-optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLf-gehMkn4dZf1YoeBFwVto06TbpZuUpMu6_94s9expYOZ5h5mHkHuEBwQoHgMAloIClBSwyii7IAkKntGK5d-XJAFgOUXOs2tyE8Iu0kXOWELqZ-qmedg3Y9rpMPQ2pMb5dHLjybr9ENte916HMDibHod5m-qfyVlt5_PsqId-O6fmYNUcgVtyZZox6Lu_uiJfry-f6w2tP97e1081VRyrmSowhhuFAjBeVbVKibLoKqOMQGN0l-VYVq3IeVEWyLvGANcRFhq7Asu25SuCy17lXQheGzn5-II_SQR51iEXHTLqkGcdksUMWzIhsrbXXu7cwdt45j-hXwzlZEs</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Chang, Fu-Chuen</creator><creator>Chang, Hsiu-Ching</creator><creator>Wang, Sheng-Shian</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>D-optimal designs for polynomial regression with exponential weight function</title><author>Chang, Fu-Chuen ; Chang, Hsiu-Ching ; Wang, Sheng-Shian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Fu-Chuen</creatorcontrib><creatorcontrib>Chang, Hsiu-Ching</creatorcontrib><creatorcontrib>Wang, Sheng-Shian</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Fu-Chuen</au><au>Chang, Hsiu-Ching</au><au>Wang, Sheng-Shian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-optimal designs for polynomial regression with exponential weight function</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>70</volume><issue>3</issue><spage>339</spage><epage>354</epage><pages>339-354</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>Weighted polynomial regression with exponential weight function on an interval is considered. The
D
-optimal designs are completely characterized via three differential equations. Some invariant properties of the optimal designs under affine transformation are derived. The optimal design as degree of polynomial goes to infinity, is shown to converge weakly to the arcsin distribution. Comparisons of the optimal designs with the arcsin distribution are also made.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00184-008-0195-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1335 |
ispartof | Metrika, 2009-11, Vol.70 (3), p.339-354 |
issn | 0026-1335 1435-926X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00184_008_0195_2 |
source | Springer Nature |
subjects | Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Probability Theory and Stochastic Processes Statistics |
title | D-optimal designs for polynomial regression with exponential weight function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-optimal%20designs%20for%20polynomial%20regression%20with%20exponential%20weight%20function&rft.jtitle=Metrika&rft.au=Chang,%20Fu-Chuen&rft.date=2009-11-01&rft.volume=70&rft.issue=3&rft.spage=339&rft.epage=354&rft.pages=339-354&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-008-0195-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s00184_008_0195_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c0ff3fc14010269bcc487d9fcf41ffed56189b46378713daf03e1404e1d718bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |