Loading…

On the approximate fixed point property in abstract spaces

Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X * . In this paper, we establish some results concerning the σ ( X , Z )-approximate fixed point property for bounded, closed convex subsets C of X . Three major situations are studied. First, when Z is separa...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2012-08, Vol.271 (3-4), p.1271-1285
Main Authors: Barroso, C. S., Kalenda, O. F. K., Lin, P.-K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453
cites cdi_FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453
container_end_page 1285
container_issue 3-4
container_start_page 1271
container_title Mathematische Zeitschrift
container_volume 271
creator Barroso, C. S.
Kalenda, O. F. K.
Lin, P.-K.
description Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X * . In this paper, we establish some results concerning the σ ( X , Z )-approximate fixed point property for bounded, closed convex subsets C of X . Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z  =  X * , and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Fréchet–Urysohn property for certain sets with regarding the σ ( X , Z )-topology. The support tools include the Brouwer’s fixed point theorem and an analogous version of the classical Rosenthal’s ℓ 1 -theorem for ℓ 1 -sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.
doi_str_mv 10.1007/s00209-011-0915-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00209_011_0915_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00209_011_0915_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFd_gLf8gehkkqapN1n8goW96DmkbaJdtA1JhN1_b5Z63tPAvPMM70PILYc7DtDcJwCElgHnDFpeM3VGKi4FMq5RnJOqxDWrdSMvyVVKO4ASNrIiD9uJ5i9HbQhx3o8_Njvqx70baJjHKdOyDS7mAx0naruUo-0zTcH2Ll2TC2-_k7v5nyvy8fz0vn5lm-3L2_pxw3rUOjNUyiNaHKRWXa86VI3n2AhoW0B01rdC96Lm0oHtBhRSNiic1EJIj1rWYkX48rePc0rReRNiKRoPhoM5yptF3hR5c5Q3qjC4MKncTp8umt38G6dS8wT0B0QOWyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the approximate fixed point property in abstract spaces</title><source>Springer Nature</source><creator>Barroso, C. S. ; Kalenda, O. F. K. ; Lin, P.-K.</creator><creatorcontrib>Barroso, C. S. ; Kalenda, O. F. K. ; Lin, P.-K.</creatorcontrib><description>Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X * . In this paper, we establish some results concerning the σ ( X , Z )-approximate fixed point property for bounded, closed convex subsets C of X . Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z  =  X * , and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Fréchet–Urysohn property for certain sets with regarding the σ ( X , Z )-topology. The support tools include the Brouwer’s fixed point theorem and an analogous version of the classical Rosenthal’s ℓ 1 -theorem for ℓ 1 -sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-011-0915-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2012-08, Vol.271 (3-4), p.1271-1285</ispartof><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453</citedby><cites>FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barroso, C. S.</creatorcontrib><creatorcontrib>Kalenda, O. F. K.</creatorcontrib><creatorcontrib>Lin, P.-K.</creatorcontrib><title>On the approximate fixed point property in abstract spaces</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X * . In this paper, we establish some results concerning the σ ( X , Z )-approximate fixed point property for bounded, closed convex subsets C of X . Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z  =  X * , and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Fréchet–Urysohn property for certain sets with regarding the σ ( X , Z )-topology. The support tools include the Brouwer’s fixed point theorem and an analogous version of the classical Rosenthal’s ℓ 1 -theorem for ℓ 1 -sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFd_gLf8gehkkqapN1n8goW96DmkbaJdtA1JhN1_b5Z63tPAvPMM70PILYc7DtDcJwCElgHnDFpeM3VGKi4FMq5RnJOqxDWrdSMvyVVKO4ASNrIiD9uJ5i9HbQhx3o8_Njvqx70baJjHKdOyDS7mAx0naruUo-0zTcH2Ll2TC2-_k7v5nyvy8fz0vn5lm-3L2_pxw3rUOjNUyiNaHKRWXa86VI3n2AhoW0B01rdC96Lm0oHtBhRSNiic1EJIj1rWYkX48rePc0rReRNiKRoPhoM5yptF3hR5c5Q3qjC4MKncTp8umt38G6dS8wT0B0QOWyw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Barroso, C. S.</creator><creator>Kalenda, O. F. K.</creator><creator>Lin, P.-K.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>On the approximate fixed point property in abstract spaces</title><author>Barroso, C. S. ; Kalenda, O. F. K. ; Lin, P.-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso, C. S.</creatorcontrib><creatorcontrib>Kalenda, O. F. K.</creatorcontrib><creatorcontrib>Lin, P.-K.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso, C. S.</au><au>Kalenda, O. F. K.</au><au>Lin, P.-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the approximate fixed point property in abstract spaces</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>271</volume><issue>3-4</issue><spage>1271</spage><epage>1285</epage><pages>1271-1285</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X * . In this paper, we establish some results concerning the σ ( X , Z )-approximate fixed point property for bounded, closed convex subsets C of X . Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z  =  X * , and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Fréchet–Urysohn property for certain sets with regarding the σ ( X , Z )-topology. The support tools include the Brouwer’s fixed point theorem and an analogous version of the classical Rosenthal’s ℓ 1 -theorem for ℓ 1 -sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00209-011-0915-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2012-08, Vol.271 (3-4), p.1271-1285
issn 0025-5874
1432-1823
language eng
recordid cdi_crossref_primary_10_1007_s00209_011_0915_6
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title On the approximate fixed point property in abstract spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20approximate%20fixed%20point%20property%20in%20abstract%20spaces&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Barroso,%20C.%20S.&rft.date=2012-08-01&rft.volume=271&rft.issue=3-4&rft.spage=1271&rft.epage=1285&rft.pages=1271-1285&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-011-0915-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s00209_011_0915_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-266f22a2d486bc6b267f1273099022eaf938c3514e0abd2344723e48334f28453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true