Loading…

Green’s Conjecture for curves on rational surfaces with an anticanonical pencil

Green’s Conjecture is proved for smooth curves lying on a rational surface with an anticanonical pencil, under some mild hypotheses on the line bundle . Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system is also obtained.

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2013-12, Vol.275 (3-4), p.899-910
Main Author: Lelli-Chiesa, Margherita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733
cites cdi_FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733
container_end_page 910
container_issue 3-4
container_start_page 899
container_title Mathematische Zeitschrift
container_volume 275
creator Lelli-Chiesa, Margherita
description Green’s Conjecture is proved for smooth curves lying on a rational surface with an anticanonical pencil, under some mild hypotheses on the line bundle . Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system is also obtained.
doi_str_mv 10.1007/s00209-013-1164-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00209_013_1164_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00209_013_1164_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhYMoOI4ewF0uEK38dCezlEFHYUAEXYcynWgPbTIk3Yo7r-H1PIkZxrVQVMF79QrqI-ScwwUH0JcFQMCCAZeM81YxfUBmXEnBuBHykMyq3bDGaHVMTkrZAFRTqxl5WGXv48_Xd6HLFDfejVP2NKRM3ZTffaEp0oxjnyIOtEw5oKviRz--Uoy1xt5hTLH2gW59dP1wSo4CDsWf_c05ebq5flzesvX96m55tWZOGDOy4BrUuBAChUJhpOdcdlVoFkoAuDYI7ZAL9ewCdmCM6VoI0LXcY_BCSzknfH_X5VRK9sFuc_-G-dNysDsmds_EViZ2x8TqmhH7TKm78cVnu0lTrq-Vf0K_d5BmHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green’s Conjecture for curves on rational surfaces with an anticanonical pencil</title><source>Springer Nature</source><creator>Lelli-Chiesa, Margherita</creator><creatorcontrib>Lelli-Chiesa, Margherita</creatorcontrib><description>Green’s Conjecture is proved for smooth curves lying on a rational surface with an anticanonical pencil, under some mild hypotheses on the line bundle . Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system is also obtained.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-013-1164-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2013-12, Vol.275 (3-4), p.899-910</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733</citedby><cites>FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Lelli-Chiesa, Margherita</creatorcontrib><title>Green’s Conjecture for curves on rational surfaces with an anticanonical pencil</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Green’s Conjecture is proved for smooth curves lying on a rational surface with an anticanonical pencil, under some mild hypotheses on the line bundle . Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system is also obtained.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhYMoOI4ewF0uEK38dCezlEFHYUAEXYcynWgPbTIk3Yo7r-H1PIkZxrVQVMF79QrqI-ScwwUH0JcFQMCCAZeM81YxfUBmXEnBuBHykMyq3bDGaHVMTkrZAFRTqxl5WGXv48_Xd6HLFDfejVP2NKRM3ZTffaEp0oxjnyIOtEw5oKviRz--Uoy1xt5hTLH2gW59dP1wSo4CDsWf_c05ebq5flzesvX96m55tWZOGDOy4BrUuBAChUJhpOdcdlVoFkoAuDYI7ZAL9ewCdmCM6VoI0LXcY_BCSzknfH_X5VRK9sFuc_-G-dNysDsmds_EViZ2x8TqmhH7TKm78cVnu0lTrq-Vf0K_d5BmHw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lelli-Chiesa, Margherita</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131201</creationdate><title>Green’s Conjecture for curves on rational surfaces with an anticanonical pencil</title><author>Lelli-Chiesa, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lelli-Chiesa, Margherita</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lelli-Chiesa, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green’s Conjecture for curves on rational surfaces with an anticanonical pencil</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>275</volume><issue>3-4</issue><spage>899</spage><epage>910</epage><pages>899-910</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Green’s Conjecture is proved for smooth curves lying on a rational surface with an anticanonical pencil, under some mild hypotheses on the line bundle . Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system is also obtained.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-013-1164-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2013-12, Vol.275 (3-4), p.899-910
issn 0025-5874
1432-1823
language eng
recordid cdi_crossref_primary_10_1007_s00209_013_1164_7
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title Green’s Conjecture for curves on rational surfaces with an anticanonical pencil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%E2%80%99s%20Conjecture%20for%20curves%20on%20rational%20surfaces%20with%20an%20anticanonical%20pencil&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Lelli-Chiesa,%20Margherita&rft.date=2013-12-01&rft.volume=275&rft.issue=3-4&rft.spage=899&rft.epage=910&rft.pages=899-910&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-013-1164-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s00209_013_1164_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-fc5a7a922a24a283e113d7a9594200c6f27ca124bcfad0888d60f0d61eafe2733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true