Loading…
On the full holonomy group of Lorentzian manifolds
The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null...
Saved in:
Published in: | Mathematische Zeitschrift 2014-08, Vol.277 (3-4), p.797-828 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3 |
container_end_page | 828 |
container_issue | 3-4 |
container_start_page | 797 |
container_title | Mathematische Zeitschrift |
container_volume | 277 |
creator | Baum, Helga Lärz, Kordian Leistner, Thomas |
description | The classification of restricted holonomy groups of
n
-dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor. |
doi_str_mv | 10.1007/s00209-014-1279-5 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00209_014_1279_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00209_014_1279_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</originalsourceid><addsrcrecordid>eNp9j81OxCAURonRxDr6AO54AfRCaYGlmfiXNJmNrglMYaaTFibQLsant01dezff4n7n5h6EHik8UQDxnAEYKAKUE8qEItUVKigvGaGSldeomNcVqaTgt-gu5xPMxVLwArFdwOPRYT_1PT7GPoY4XPAhxemMo8dNTC6MP50JeDCh87Fv8z268abP7uEvN-j77fVr-0Ga3fvn9qUhe87kSFpuJHXGcW4FV6yVylkuW-tq5W3tjXeV9Iwa6T03rWJUAF_G1LZmALbcILre3aeYc3Jen1M3mHTRFPQirVdpPbvoRVpXM8NWJs_dcHBJn-KUwvzmP9AvupJZ-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the full holonomy group of Lorentzian manifolds</title><source>Springer Nature</source><creator>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</creator><creatorcontrib>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</creatorcontrib><description>The classification of restricted holonomy groups of
n
-dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-014-1279-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2014-08, Vol.277 (3-4), p.797-828</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</citedby><cites>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baum, Helga</creatorcontrib><creatorcontrib>Lärz, Kordian</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><title>On the full holonomy group of Lorentzian manifolds</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>The classification of restricted holonomy groups of
n
-dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j81OxCAURonRxDr6AO54AfRCaYGlmfiXNJmNrglMYaaTFibQLsant01dezff4n7n5h6EHik8UQDxnAEYKAKUE8qEItUVKigvGaGSldeomNcVqaTgt-gu5xPMxVLwArFdwOPRYT_1PT7GPoY4XPAhxemMo8dNTC6MP50JeDCh87Fv8z268abP7uEvN-j77fVr-0Ga3fvn9qUhe87kSFpuJHXGcW4FV6yVylkuW-tq5W3tjXeV9Iwa6T03rWJUAF_G1LZmALbcILre3aeYc3Jen1M3mHTRFPQirVdpPbvoRVpXM8NWJs_dcHBJn-KUwvzmP9AvupJZ-g</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Baum, Helga</creator><creator>Lärz, Kordian</creator><creator>Leistner, Thomas</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>On the full holonomy group of Lorentzian manifolds</title><author>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baum, Helga</creatorcontrib><creatorcontrib>Lärz, Kordian</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baum, Helga</au><au>Lärz, Kordian</au><au>Leistner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the full holonomy group of Lorentzian manifolds</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>277</volume><issue>3-4</issue><spage>797</spage><epage>828</epage><pages>797-828</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>The classification of restricted holonomy groups of
n
-dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-014-1279-5</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2014-08, Vol.277 (3-4), p.797-828 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00209_014_1279_5 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics |
title | On the full holonomy group of Lorentzian manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20full%20holonomy%20group%20of%20Lorentzian%20manifolds&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Baum,%20Helga&rft.date=2014-08-01&rft.volume=277&rft.issue=3-4&rft.spage=797&rft.epage=828&rft.pages=797-828&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-014-1279-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s00209_014_1279_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |