Loading…

On the full holonomy group of Lorentzian manifolds

The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2014-08, Vol.277 (3-4), p.797-828
Main Authors: Baum, Helga, Lärz, Kordian, Leistner, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3
cites cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3
container_end_page 828
container_issue 3-4
container_start_page 797
container_title Mathematische Zeitschrift
container_volume 277
creator Baum, Helga
Lärz, Kordian
Leistner, Thomas
description The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.
doi_str_mv 10.1007/s00209-014-1279-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00209_014_1279_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00209_014_1279_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</originalsourceid><addsrcrecordid>eNp9j81OxCAURonRxDr6AO54AfRCaYGlmfiXNJmNrglMYaaTFibQLsant01dezff4n7n5h6EHik8UQDxnAEYKAKUE8qEItUVKigvGaGSldeomNcVqaTgt-gu5xPMxVLwArFdwOPRYT_1PT7GPoY4XPAhxemMo8dNTC6MP50JeDCh87Fv8z268abP7uEvN-j77fVr-0Ga3fvn9qUhe87kSFpuJHXGcW4FV6yVylkuW-tq5W3tjXeV9Iwa6T03rWJUAF_G1LZmALbcILre3aeYc3Jen1M3mHTRFPQirVdpPbvoRVpXM8NWJs_dcHBJn-KUwvzmP9AvupJZ-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the full holonomy group of Lorentzian manifolds</title><source>Springer Nature</source><creator>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</creator><creatorcontrib>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</creatorcontrib><description>The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-014-1279-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2014-08, Vol.277 (3-4), p.797-828</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</citedby><cites>FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baum, Helga</creatorcontrib><creatorcontrib>Lärz, Kordian</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><title>On the full holonomy group of Lorentzian manifolds</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j81OxCAURonRxDr6AO54AfRCaYGlmfiXNJmNrglMYaaTFibQLsant01dezff4n7n5h6EHik8UQDxnAEYKAKUE8qEItUVKigvGaGSldeomNcVqaTgt-gu5xPMxVLwArFdwOPRYT_1PT7GPoY4XPAhxemMo8dNTC6MP50JeDCh87Fv8z268abP7uEvN-j77fVr-0Ga3fvn9qUhe87kSFpuJHXGcW4FV6yVylkuW-tq5W3tjXeV9Iwa6T03rWJUAF_G1LZmALbcILre3aeYc3Jen1M3mHTRFPQirVdpPbvoRVpXM8NWJs_dcHBJn-KUwvzmP9AvupJZ-g</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Baum, Helga</creator><creator>Lärz, Kordian</creator><creator>Leistner, Thomas</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>On the full holonomy group of Lorentzian manifolds</title><author>Baum, Helga ; Lärz, Kordian ; Leistner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baum, Helga</creatorcontrib><creatorcontrib>Lärz, Kordian</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baum, Helga</au><au>Lärz, Kordian</au><au>Leistner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the full holonomy group of Lorentzian manifolds</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>277</volume><issue>3-4</issue><spage>797</spage><epage>828</epage><pages>797-828</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>The classification of restricted holonomy groups of n -dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-014-1279-5</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2014-08, Vol.277 (3-4), p.797-828
issn 0025-5874
1432-1823
language eng
recordid cdi_crossref_primary_10_1007_s00209_014_1279_5
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title On the full holonomy group of Lorentzian manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20full%20holonomy%20group%20of%20Lorentzian%20manifolds&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Baum,%20Helga&rft.date=2014-08-01&rft.volume=277&rft.issue=3-4&rft.spage=797&rft.epage=828&rft.pages=797-828&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-014-1279-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s00209_014_1279_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-d4a81eae44b7492d89eb48dbe69fb6fafe58f21a8ff4ad9217044444a6b6200b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true