Loading…

Vacillating Hecke tableaux and linked partitions

We introduce the structure of vacillating Hecke tableaux. By using the Hecke insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong, we establish a one-to-one correspondence between vacillating Hecke tableaux and linked partitions, which arise in free probability theory. We defi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2015-12, Vol.281 (3-4), p.661-672
Main Authors: Chen, William Y. C., Guo, Peter L., Pang, Sabrina X. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03
cites cdi_FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03
container_end_page 672
container_issue 3-4
container_start_page 661
container_title Mathematische Zeitschrift
container_volume 281
creator Chen, William Y. C.
Guo, Peter L.
Pang, Sabrina X. M.
description We introduce the structure of vacillating Hecke tableaux. By using the Hecke insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong, we establish a one-to-one correspondence between vacillating Hecke tableaux and linked partitions, which arise in free probability theory. We define a Hecke diagram as a Young diagram possibly with a marked corner. A vacillating Hecke tableau is defined as a sequence of Hecke diagrams subject to a certain condition on addition and deletion of rook strips. The notion of a rook strip was introduced by Buch in the study of the Littlewood–Richardson rule for stable Grothendieck polynomials. We show that the crossing number and the nesting number of a linked partition can be determined by the maximal number of rows and the maximal number of columns of diagrams in the corresponding vacillating Hecke tableau. The proof relies on a theorem due to Thomas and Yong. As consequences, we confirm two conjectures on the distribution of the crossing number and the nesting number over linked partitions and ordinary partitions, respectively proposed by de Mier and Kim.
doi_str_mv 10.1007/s00209-015-1501-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00209_015_1501_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00209_015_1501_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFd_gLf-gehMPkh6lEVdYcGLeg1pki7ZremSdEH_vS31vKcZeN9nmIeQe4QHBFCPBYBBQwElRQlI4YJUKDijqBm_JNUUSyq1EtfkppQ9wBQqURH4si72vR1j2tWb4A6hHm3bB3v6qW3ydR_TIfj6aPMYxzikckuuOtuXcPc_V-Tz5fljvaHb99e39dOWOi71SAUGJwNqRNeg8lyyVvlpl5aHpnHCCuQNaG9RAeddELoFjUFx10rFPPAVweWuy0MpOXTmmOO3zb8GwczKZlE2k7KZlc3MsIUpUzftQjb74ZTT9OYZ6A8jZlfn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vacillating Hecke tableaux and linked partitions</title><source>Springer Nature</source><creator>Chen, William Y. C. ; Guo, Peter L. ; Pang, Sabrina X. M.</creator><creatorcontrib>Chen, William Y. C. ; Guo, Peter L. ; Pang, Sabrina X. M.</creatorcontrib><description>We introduce the structure of vacillating Hecke tableaux. By using the Hecke insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong, we establish a one-to-one correspondence between vacillating Hecke tableaux and linked partitions, which arise in free probability theory. We define a Hecke diagram as a Young diagram possibly with a marked corner. A vacillating Hecke tableau is defined as a sequence of Hecke diagrams subject to a certain condition on addition and deletion of rook strips. The notion of a rook strip was introduced by Buch in the study of the Littlewood–Richardson rule for stable Grothendieck polynomials. We show that the crossing number and the nesting number of a linked partition can be determined by the maximal number of rows and the maximal number of columns of diagrams in the corresponding vacillating Hecke tableau. The proof relies on a theorem due to Thomas and Yong. As consequences, we confirm two conjectures on the distribution of the crossing number and the nesting number over linked partitions and ordinary partitions, respectively proposed by de Mier and Kim.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-015-1501-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2015-12, Vol.281 (3-4), p.661-672</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03</citedby><cites>FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Guo, Peter L.</creatorcontrib><creatorcontrib>Pang, Sabrina X. M.</creatorcontrib><title>Vacillating Hecke tableaux and linked partitions</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We introduce the structure of vacillating Hecke tableaux. By using the Hecke insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong, we establish a one-to-one correspondence between vacillating Hecke tableaux and linked partitions, which arise in free probability theory. We define a Hecke diagram as a Young diagram possibly with a marked corner. A vacillating Hecke tableau is defined as a sequence of Hecke diagrams subject to a certain condition on addition and deletion of rook strips. The notion of a rook strip was introduced by Buch in the study of the Littlewood–Richardson rule for stable Grothendieck polynomials. We show that the crossing number and the nesting number of a linked partition can be determined by the maximal number of rows and the maximal number of columns of diagrams in the corresponding vacillating Hecke tableau. The proof relies on a theorem due to Thomas and Yong. As consequences, we confirm two conjectures on the distribution of the crossing number and the nesting number over linked partitions and ordinary partitions, respectively proposed by de Mier and Kim.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFd_gLf-gehMPkh6lEVdYcGLeg1pki7ZremSdEH_vS31vKcZeN9nmIeQe4QHBFCPBYBBQwElRQlI4YJUKDijqBm_JNUUSyq1EtfkppQ9wBQqURH4si72vR1j2tWb4A6hHm3bB3v6qW3ydR_TIfj6aPMYxzikckuuOtuXcPc_V-Tz5fljvaHb99e39dOWOi71SAUGJwNqRNeg8lyyVvlpl5aHpnHCCuQNaG9RAeddELoFjUFx10rFPPAVweWuy0MpOXTmmOO3zb8GwczKZlE2k7KZlc3MsIUpUzftQjb74ZTT9OYZ6A8jZlfn</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Chen, William Y. C.</creator><creator>Guo, Peter L.</creator><creator>Pang, Sabrina X. M.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>Vacillating Hecke tableaux and linked partitions</title><author>Chen, William Y. C. ; Guo, Peter L. ; Pang, Sabrina X. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Guo, Peter L.</creatorcontrib><creatorcontrib>Pang, Sabrina X. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y. C.</au><au>Guo, Peter L.</au><au>Pang, Sabrina X. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacillating Hecke tableaux and linked partitions</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>281</volume><issue>3-4</issue><spage>661</spage><epage>672</epage><pages>661-672</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We introduce the structure of vacillating Hecke tableaux. By using the Hecke insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong, we establish a one-to-one correspondence between vacillating Hecke tableaux and linked partitions, which arise in free probability theory. We define a Hecke diagram as a Young diagram possibly with a marked corner. A vacillating Hecke tableau is defined as a sequence of Hecke diagrams subject to a certain condition on addition and deletion of rook strips. The notion of a rook strip was introduced by Buch in the study of the Littlewood–Richardson rule for stable Grothendieck polynomials. We show that the crossing number and the nesting number of a linked partition can be determined by the maximal number of rows and the maximal number of columns of diagrams in the corresponding vacillating Hecke tableau. The proof relies on a theorem due to Thomas and Yong. As consequences, we confirm two conjectures on the distribution of the crossing number and the nesting number over linked partitions and ordinary partitions, respectively proposed by de Mier and Kim.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-015-1501-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2015-12, Vol.281 (3-4), p.661-672
issn 0025-5874
1432-1823
language eng
recordid cdi_crossref_primary_10_1007_s00209_015_1501_0
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title Vacillating Hecke tableaux and linked partitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacillating%20Hecke%20tableaux%20and%20linked%20partitions&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Chen,%20William%20Y.%20C.&rft.date=2015-12-01&rft.volume=281&rft.issue=3-4&rft.spage=661&rft.epage=672&rft.pages=661-672&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-015-1501-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s00209_015_1501_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-41ec5e1811c917d352b7d1c95a3e99c4a413908da17033fe48b081e73cb572d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true