Loading…

Implicit double shift QR-algorithm for companion matrices

In this paper an implicit (double) shifted QR -method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2010-08, Vol.116 (2), p.177-212
Main Authors: Van Barel, Marc, Vandebril, Raf, Van Dooren, Paul, Frederix, Katrijn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993
cites cdi_FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993
container_end_page 212
container_issue 2
container_start_page 177
container_title Numerische Mathematik
container_volume 116
creator Van Barel, Marc
Vandebril, Raf
Van Dooren, Paul
Frederix, Katrijn
description In this paper an implicit (double) shifted QR -method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR -method. This makes these matrices suitable for the design of a fast QR -method. Several techniques already exist for performing a QR -step. The implementation of these methods is highly dependent on the representation used. Unfortunately for most of the methods compression is needed since one is not able to maintain all three, unitary, Hessenberg and rank 1 structures. In this manuscript an implicit algorithm will be designed for performing a step of the QR -method on the companion or fellow matrix based on a new representation consisting of Givens transformations. Moreover, no compression is needed as the specific representation of the involved matrices is maintained. Finally, also a double shift version of the implicit method is presented.
doi_str_mv 10.1007/s00211-010-0302-y
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_010_0302_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23072168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWKs_wNtePEZnkt3N5ijFj0JBFAVvIZts2pT9Itke-u9NWfHoaQbmfd7hIeQW4R4BxEMEYIgUEChwYPR4RhYg84JylhfnaQcmaSHl9yW5inEPgKLMcUHkuhtbb_yU2eFQt00Wd95N2fsH1e12CH7adZkbQmaGbtS9H_qs01PwponX5MLpNjY3v3NJvp6fPlevdPP2sl49bqjhJU7UoqydNCVyQKetcSw9tsiZqwtTABbOlhJqKwWzAksnKllZI3Ihha2ElHxJcO41YYgxNE6NwXc6HBWCOrmr2V0ld3VyV8fE3M3MqKPRrQu6Nz7-gYyDYFhWKcfmXEynftsEtR8OoU86_5T_AG06aTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implicit double shift QR-algorithm for companion matrices</title><source>Springer Nature</source><creator>Van Barel, Marc ; Vandebril, Raf ; Van Dooren, Paul ; Frederix, Katrijn</creator><creatorcontrib>Van Barel, Marc ; Vandebril, Raf ; Van Dooren, Paul ; Frederix, Katrijn</creatorcontrib><description>In this paper an implicit (double) shifted QR -method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR -method. This makes these matrices suitable for the design of a fast QR -method. Several techniques already exist for performing a QR -step. The implementation of these methods is highly dependent on the representation used. Unfortunately for most of the methods compression is needed since one is not able to maintain all three, unitary, Hessenberg and rank 1 structures. In this manuscript an implicit algorithm will be designed for performing a step of the QR -method on the companion or fellow matrix based on a new representation consisting of Givens transformations. Moreover, no compression is needed as the specific representation of the involved matrices is maintained. Finally, also a double shift version of the implicit method is presented.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-010-0302-y</identifier><identifier>CODEN: NUMMA7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Designs and configurations ; Exact sciences and technology ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear algebraic and transcendental equations ; Numerical Analysis ; Numerical analysis. Scientific computation ; Numerical and Computational Physics ; Numerical linear algebra ; Sciences and techniques of general use ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2010-08, Vol.116 (2), p.177-212</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993</citedby><cites>FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072168$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Barel, Marc</creatorcontrib><creatorcontrib>Vandebril, Raf</creatorcontrib><creatorcontrib>Van Dooren, Paul</creatorcontrib><creatorcontrib>Frederix, Katrijn</creatorcontrib><title>Implicit double shift QR-algorithm for companion matrices</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>In this paper an implicit (double) shifted QR -method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR -method. This makes these matrices suitable for the design of a fast QR -method. Several techniques already exist for performing a QR -step. The implementation of these methods is highly dependent on the representation used. Unfortunately for most of the methods compression is needed since one is not able to maintain all three, unitary, Hessenberg and rank 1 structures. In this manuscript an implicit algorithm will be designed for performing a step of the QR -method on the companion or fellow matrix based on a new representation consisting of Givens transformations. Moreover, no compression is needed as the specific representation of the involved matrices is maintained. Finally, also a double shift version of the implicit method is presented.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical Analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical and Computational Physics</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWKs_wNtePEZnkt3N5ijFj0JBFAVvIZts2pT9Itke-u9NWfHoaQbmfd7hIeQW4R4BxEMEYIgUEChwYPR4RhYg84JylhfnaQcmaSHl9yW5inEPgKLMcUHkuhtbb_yU2eFQt00Wd95N2fsH1e12CH7adZkbQmaGbtS9H_qs01PwponX5MLpNjY3v3NJvp6fPlevdPP2sl49bqjhJU7UoqydNCVyQKetcSw9tsiZqwtTABbOlhJqKwWzAksnKllZI3Ihha2ElHxJcO41YYgxNE6NwXc6HBWCOrmr2V0ld3VyV8fE3M3MqKPRrQu6Nz7-gYyDYFhWKcfmXEynftsEtR8OoU86_5T_AG06aTo</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Van Barel, Marc</creator><creator>Vandebril, Raf</creator><creator>Van Dooren, Paul</creator><creator>Frederix, Katrijn</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100801</creationdate><title>Implicit double shift QR-algorithm for companion matrices</title><author>Van Barel, Marc ; Vandebril, Raf ; Van Dooren, Paul ; Frederix, Katrijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical Analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical and Computational Physics</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Barel, Marc</creatorcontrib><creatorcontrib>Vandebril, Raf</creatorcontrib><creatorcontrib>Van Dooren, Paul</creatorcontrib><creatorcontrib>Frederix, Katrijn</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Barel, Marc</au><au>Vandebril, Raf</au><au>Van Dooren, Paul</au><au>Frederix, Katrijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit double shift QR-algorithm for companion matrices</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>116</volume><issue>2</issue><spage>177</spage><epage>212</epage><pages>177-212</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><coden>NUMMA7</coden><abstract>In this paper an implicit (double) shifted QR -method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR -method. This makes these matrices suitable for the design of a fast QR -method. Several techniques already exist for performing a QR -step. The implementation of these methods is highly dependent on the representation used. Unfortunately for most of the methods compression is needed since one is not able to maintain all three, unitary, Hessenberg and rank 1 structures. In this manuscript an implicit algorithm will be designed for performing a step of the QR -method on the companion or fellow matrix based on a new representation consisting of Givens transformations. Moreover, no compression is needed as the specific representation of the involved matrices is maintained. Finally, also a double shift version of the implicit method is presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00211-010-0302-y</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2010-08, Vol.116 (2), p.177-212
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s00211_010_0302_y
source Springer Nature
subjects Combinatorics
Combinatorics. Ordered structures
Designs and configurations
Exact sciences and technology
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Nonlinear algebraic and transcendental equations
Numerical Analysis
Numerical analysis. Scientific computation
Numerical and Computational Physics
Numerical linear algebra
Sciences and techniques of general use
Simulation
Theoretical
title Implicit double shift QR-algorithm for companion matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20double%20shift%20QR-algorithm%20for%20companion%20matrices&rft.jtitle=Numerische%20Mathematik&rft.au=Van%20Barel,%20Marc&rft.date=2010-08-01&rft.volume=116&rft.issue=2&rft.spage=177&rft.epage=212&rft.pages=177-212&rft.issn=0029-599X&rft.eissn=0945-3245&rft.coden=NUMMA7&rft_id=info:doi/10.1007/s00211-010-0302-y&rft_dat=%3Cpascalfrancis_cross%3E23072168%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-d19bf9c61301fadcf2764d132fb5c5015fd690bd972d716f7898dc74797d87993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true