Loading…

Stochastic Galerkin techniques for random ordinary differential equations

Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochast...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2012-11, Vol.122 (3), p.399-419
Main Authors: Augustin, F., Rentrop, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513
cites cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513
container_end_page 419
container_issue 3
container_start_page 399
container_title Numerische Mathematik
container_volume 122
creator Augustin, F.
Rentrop, P.
description Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2 -error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.
doi_str_mv 10.1007/s00211-012-0466-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_012_0466_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_012_0466_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKs_wFv-QDSTTbqboxSthYIHFbyFaT5sapvYZHvw37tlPXuaOcwbHo-QW-B3wHl7XzkXAIyDYFzOZqw7IxOupWKNkOp82LnQTGn9cUmuat1yDu1MwoQsX_tsN1j7aOkCd758xUR7bzcpHo6-0pALLZhc3tNcXExYfqiLIfjiUx9xR_3hiH3MqV6Ti4C76m_-5pS8Pz2-zZ_Z6mWxnD-smBVd17NOgAQe0HqwyqP2a-RorW7VukWtB88ghMDGybVC77RvUTilVWigk05BMyUw_rUl11p8MN8l7gcvA9ycWpixhRlamFML0w2MGJk63KZPX8w2H0saNP-BfgHeg2N3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Galerkin techniques for random ordinary differential equations</title><source>Springer Nature</source><creator>Augustin, F. ; Rentrop, P.</creator><creatorcontrib>Augustin, F. ; Rentrop, P.</creatorcontrib><description>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2 -error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-012-0466-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2012-11, Vol.122 (3), p.399-419</ispartof><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</citedby><cites>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Augustin, F.</creatorcontrib><creatorcontrib>Rentrop, P.</creatorcontrib><title>Stochastic Galerkin techniques for random ordinary differential equations</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2 -error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKs_wFv-QDSTTbqboxSthYIHFbyFaT5sapvYZHvw37tlPXuaOcwbHo-QW-B3wHl7XzkXAIyDYFzOZqw7IxOupWKNkOp82LnQTGn9cUmuat1yDu1MwoQsX_tsN1j7aOkCd758xUR7bzcpHo6-0pALLZhc3tNcXExYfqiLIfjiUx9xR_3hiH3MqV6Ti4C76m_-5pS8Pz2-zZ_Z6mWxnD-smBVd17NOgAQe0HqwyqP2a-RorW7VukWtB88ghMDGybVC77RvUTilVWigk05BMyUw_rUl11p8MN8l7gcvA9ycWpixhRlamFML0w2MGJk63KZPX8w2H0saNP-BfgHeg2N3</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Augustin, F.</creator><creator>Rentrop, P.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Stochastic Galerkin techniques for random ordinary differential equations</title><author>Augustin, F. ; Rentrop, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augustin, F.</creatorcontrib><creatorcontrib>Rentrop, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augustin, F.</au><au>Rentrop, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Galerkin techniques for random ordinary differential equations</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>122</volume><issue>3</issue><spage>399</spage><epage>419</epage><pages>399-419</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2 -error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00211-012-0466-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2012-11, Vol.122 (3), p.399-419
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s00211_012_0466_8
source Springer Nature
subjects Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title Stochastic Galerkin techniques for random ordinary differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Galerkin%20techniques%20for%20random%20ordinary%20differential%20equations&rft.jtitle=Numerische%20Mathematik&rft.au=Augustin,%20F.&rft.date=2012-11-01&rft.volume=122&rft.issue=3&rft.spage=399&rft.epage=419&rft.pages=399-419&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-012-0466-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_012_0466_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true