Loading…
Stochastic Galerkin techniques for random ordinary differential equations
Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochast...
Saved in:
Published in: | Numerische Mathematik 2012-11, Vol.122 (3), p.399-419 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513 |
container_end_page | 419 |
container_issue | 3 |
container_start_page | 399 |
container_title | Numerische Mathematik |
container_volume | 122 |
creator | Augustin, F. Rentrop, P. |
description | Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the
L
2
-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context. |
doi_str_mv | 10.1007/s00211-012-0466-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_012_0466_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_012_0466_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKs_wFv-QDSTTbqboxSthYIHFbyFaT5sapvYZHvw37tlPXuaOcwbHo-QW-B3wHl7XzkXAIyDYFzOZqw7IxOupWKNkOp82LnQTGn9cUmuat1yDu1MwoQsX_tsN1j7aOkCd758xUR7bzcpHo6-0pALLZhc3tNcXExYfqiLIfjiUx9xR_3hiH3MqV6Ti4C76m_-5pS8Pz2-zZ_Z6mWxnD-smBVd17NOgAQe0HqwyqP2a-RorW7VukWtB88ghMDGybVC77RvUTilVWigk05BMyUw_rUl11p8MN8l7gcvA9ycWpixhRlamFML0w2MGJk63KZPX8w2H0saNP-BfgHeg2N3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Galerkin techniques for random ordinary differential equations</title><source>Springer Nature</source><creator>Augustin, F. ; Rentrop, P.</creator><creatorcontrib>Augustin, F. ; Rentrop, P.</creatorcontrib><description>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the
L
2
-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-012-0466-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2012-11, Vol.122 (3), p.399-419</ispartof><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</citedby><cites>FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Augustin, F.</creatorcontrib><creatorcontrib>Rentrop, P.</creatorcontrib><title>Stochastic Galerkin techniques for random ordinary differential equations</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the
L
2
-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKs_wFv-QDSTTbqboxSthYIHFbyFaT5sapvYZHvw37tlPXuaOcwbHo-QW-B3wHl7XzkXAIyDYFzOZqw7IxOupWKNkOp82LnQTGn9cUmuat1yDu1MwoQsX_tsN1j7aOkCd758xUR7bzcpHo6-0pALLZhc3tNcXExYfqiLIfjiUx9xR_3hiH3MqV6Ti4C76m_-5pS8Pz2-zZ_Z6mWxnD-smBVd17NOgAQe0HqwyqP2a-RorW7VukWtB88ghMDGybVC77RvUTilVWigk05BMyUw_rUl11p8MN8l7gcvA9ycWpixhRlamFML0w2MGJk63KZPX8w2H0saNP-BfgHeg2N3</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Augustin, F.</creator><creator>Rentrop, P.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Stochastic Galerkin techniques for random ordinary differential equations</title><author>Augustin, F. ; Rentrop, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augustin, F.</creatorcontrib><creatorcontrib>Rentrop, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augustin, F.</au><au>Rentrop, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Galerkin techniques for random ordinary differential equations</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>122</volume><issue>3</issue><spage>399</spage><epage>419</epage><pages>399-419</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the
L
2
-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00211-012-0466-8</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2012-11, Vol.122 (3), p.399-419 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00211_012_0466_8 |
source | Springer Nature |
subjects | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
title | Stochastic Galerkin techniques for random ordinary differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Galerkin%20techniques%20for%20random%20ordinary%20differential%20equations&rft.jtitle=Numerische%20Mathematik&rft.au=Augustin,%20F.&rft.date=2012-11-01&rft.volume=122&rft.issue=3&rft.spage=399&rft.epage=419&rft.pages=399-419&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-012-0466-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_012_0466_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-821410face1c5ea9eba0acc975b7a99002f222a3d4b5aed9e7a2d595f3184d513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |