Loading…
Numerical solution of Sturm–Liouville problems via Fer streamers
We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, wh...
Saved in:
Published in: | Numerische Mathematik 2015-11, Vol.131 (3), p.541-565 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853 |
container_end_page | 565 |
container_issue | 3 |
container_start_page | 541 |
container_title | Numerische Mathematik |
container_volume | 131 |
creator | Ramos, Alberto Gil C. P. Iserles, Arieh |
description | We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers. |
doi_str_mv | 10.1007/s00211-014-0695-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_014_0695_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_014_0695_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI5-gLv8QPQlTZNmqYOjQtGFCu5CkibSoW2GpB1w5z_4h36JHca1q3cX71wuB6FLClcUQF5nAEYpAcoJCFUSOEILULwkBePl8ZyBKVIq9X6KznLeAFApOF2g26ep96l1psM5dtPYxgHHgF_GKfU_X991G6dd23Ueb1O0ne8z3rUGr33CeUzezGw-RyfBdNlf_N0lelvfva4eSP18_7i6qYkrGB2J4QGsZcLKwgAo5qRqZGWc8aaoZMGb4DjznNtKCqWsFEE2zMsyGEMFr8piieih16WYc_JBb1Pbm_SpKei9BH2QoGcJei9Bw8ywA5Pn3-HDJ72JUxrmmf9Av_29YP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><source>Springer Link</source><creator>Ramos, Alberto Gil C. P. ; Iserles, Arieh</creator><creatorcontrib>Ramos, Alberto Gil C. P. ; Iserles, Arieh</creatorcontrib><description>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-014-0695-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2015-11, Vol.131 (3), p.541-565</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</citedby><cites>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramos, Alberto Gil C. P.</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI5-gLv8QPQlTZNmqYOjQtGFCu5CkibSoW2GpB1w5z_4h36JHca1q3cX71wuB6FLClcUQF5nAEYpAcoJCFUSOEILULwkBePl8ZyBKVIq9X6KznLeAFApOF2g26ep96l1psM5dtPYxgHHgF_GKfU_X991G6dd23Ueb1O0ne8z3rUGr33CeUzezGw-RyfBdNlf_N0lelvfva4eSP18_7i6qYkrGB2J4QGsZcLKwgAo5qRqZGWc8aaoZMGb4DjznNtKCqWsFEE2zMsyGEMFr8piieih16WYc_JBb1Pbm_SpKei9BH2QoGcJei9Bw8ywA5Pn3-HDJ72JUxrmmf9Av_29YP8</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ramos, Alberto Gil C. P.</creator><creator>Iserles, Arieh</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><author>Ramos, Alberto Gil C. P. ; Iserles, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Alberto Gil C. P.</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Alberto Gil C. P.</au><au>Iserles, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of Sturm–Liouville problems via Fer streamers</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>131</volume><issue>3</issue><spage>541</spage><epage>565</epage><pages>541-565</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-014-0695-0</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2015-11, Vol.131 (3), p.541-565 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00211_014_0695_0 |
source | Springer Link |
subjects | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
title | Numerical solution of Sturm–Liouville problems via Fer streamers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20Sturm%E2%80%93Liouville%20problems%20via%20Fer%20streamers&rft.jtitle=Numerische%20Mathematik&rft.au=Ramos,%20Alberto%20Gil%20C.%20P.&rft.date=2015-11-01&rft.volume=131&rft.issue=3&rft.spage=541&rft.epage=565&rft.pages=541-565&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-014-0695-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_014_0695_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |