Loading…

Numerical solution of Sturm–Liouville problems via Fer streamers

We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, wh...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2015-11, Vol.131 (3), p.541-565
Main Authors: Ramos, Alberto Gil C. P., Iserles, Arieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853
cites cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853
container_end_page 565
container_issue 3
container_start_page 541
container_title Numerische Mathematik
container_volume 131
creator Ramos, Alberto Gil C. P.
Iserles, Arieh
description We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.
doi_str_mv 10.1007/s00211-014-0695-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_014_0695_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_014_0695_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI5-gLv8QPQlTZNmqYOjQtGFCu5CkibSoW2GpB1w5z_4h36JHca1q3cX71wuB6FLClcUQF5nAEYpAcoJCFUSOEILULwkBePl8ZyBKVIq9X6KznLeAFApOF2g26ep96l1psM5dtPYxgHHgF_GKfU_X991G6dd23Ueb1O0ne8z3rUGr33CeUzezGw-RyfBdNlf_N0lelvfva4eSP18_7i6qYkrGB2J4QGsZcLKwgAo5qRqZGWc8aaoZMGb4DjznNtKCqWsFEE2zMsyGEMFr8piieih16WYc_JBb1Pbm_SpKei9BH2QoGcJei9Bw8ywA5Pn3-HDJ72JUxrmmf9Av_29YP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><source>Springer Link</source><creator>Ramos, Alberto Gil C. P. ; Iserles, Arieh</creator><creatorcontrib>Ramos, Alberto Gil C. P. ; Iserles, Arieh</creatorcontrib><description>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-014-0695-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2015-11, Vol.131 (3), p.541-565</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</citedby><cites>FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramos, Alberto Gil C. P.</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI5-gLv8QPQlTZNmqYOjQtGFCu5CkibSoW2GpB1w5z_4h36JHca1q3cX71wuB6FLClcUQF5nAEYpAcoJCFUSOEILULwkBePl8ZyBKVIq9X6KznLeAFApOF2g26ep96l1psM5dtPYxgHHgF_GKfU_X991G6dd23Ueb1O0ne8z3rUGr33CeUzezGw-RyfBdNlf_N0lelvfva4eSP18_7i6qYkrGB2J4QGsZcLKwgAo5qRqZGWc8aaoZMGb4DjznNtKCqWsFEE2zMsyGEMFr8piieih16WYc_JBb1Pbm_SpKei9BH2QoGcJei9Bw8ywA5Pn3-HDJ72JUxrmmf9Av_29YP8</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ramos, Alberto Gil C. P.</creator><creator>Iserles, Arieh</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Numerical solution of Sturm–Liouville problems via Fer streamers</title><author>Ramos, Alberto Gil C. P. ; Iserles, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Alberto Gil C. P.</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Alberto Gil C. P.</au><au>Iserles, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of Sturm–Liouville problems via Fer streamers</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>131</volume><issue>3</issue><spage>541</spage><epage>565</epage><pages>541-565</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-014-0695-0</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2015-11, Vol.131 (3), p.541-565
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s00211_014_0695_0
source Springer Link
subjects Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title Numerical solution of Sturm–Liouville problems via Fer streamers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20Sturm%E2%80%93Liouville%20problems%20via%20Fer%20streamers&rft.jtitle=Numerische%20Mathematik&rft.au=Ramos,%20Alberto%20Gil%20C.%20P.&rft.date=2015-11-01&rft.volume=131&rft.issue=3&rft.spage=541&rft.epage=565&rft.pages=541-565&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-014-0695-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_014_0695_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-a4f0bb26b73a0092c79d78acaea38734dfc42e44b87699b76f7d2e75faa164853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true