Loading…

General relaxation methods for initial-value problems with application to multistep schemes

Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or hig...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2020-12, Vol.146 (4), p.875-906
Main Authors: Ranocha, Hendrik, Lóczi, Lajos, Ketcheson, David I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3
cites cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3
container_end_page 906
container_issue 4
container_start_page 875
container_title Numerische Mathematik
container_volume 146
creator Ranocha, Hendrik
Lóczi, Lajos
Ketcheson, David I.
description Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.
doi_str_mv 10.1007/s00211-020-01158-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_020_01158_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_020_01158_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKv8QLTy6OnOUgYdhQE3CoKLkO5UOxnSD5KMj7-3tV27qruoc7kcQi45XHGA8joBCM4ZCGDAeVExdUQWoFXBpFDF8ZRBaFZo_XJKzlLaA_BypfiCvG6wx2gDjRjsp81-6GmHeTe4RNshUt_77G1g7zYckI5xqAN2iX74vKN2HINvZiYPtDuE7FPGkaZmhx2mc3LS2pDw4u8uyfPd7dP6nm0fNw_rmy1rhOaZOWxlqeSqrLjTYBU6AbxStq5d1UhRWq1rxNo5aAqBGiQ6Xls1ZVsorhq5JGLubeKQUsTWjNF3Nn4ZDuZHj5n1mEmP-dVj1ATJGUrTc_-G0eyHQ-ynnf9R35cqau8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General relaxation methods for initial-value problems with application to multistep schemes</title><source>Springer Link</source><creator>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</creator><creatorcontrib>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</creatorcontrib><description>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-020-01158-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2020-12, Vol.146 (4), p.875-906</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</citedby><cites>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</cites><orcidid>0000-0002-1212-126X ; 0000-0002-3456-2277 ; 0000-0002-7999-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranocha, Hendrik</creatorcontrib><creatorcontrib>Lóczi, Lajos</creatorcontrib><creatorcontrib>Ketcheson, David I.</creatorcontrib><title>General relaxation methods for initial-value problems with application to multistep schemes</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKv8QLTy6OnOUgYdhQE3CoKLkO5UOxnSD5KMj7-3tV27qruoc7kcQi45XHGA8joBCM4ZCGDAeVExdUQWoFXBpFDF8ZRBaFZo_XJKzlLaA_BypfiCvG6wx2gDjRjsp81-6GmHeTe4RNshUt_77G1g7zYckI5xqAN2iX74vKN2HINvZiYPtDuE7FPGkaZmhx2mc3LS2pDw4u8uyfPd7dP6nm0fNw_rmy1rhOaZOWxlqeSqrLjTYBU6AbxStq5d1UhRWq1rxNo5aAqBGiQ6Xls1ZVsorhq5JGLubeKQUsTWjNF3Nn4ZDuZHj5n1mEmP-dVj1ATJGUrTc_-G0eyHQ-ynnf9R35cqau8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ranocha, Hendrik</creator><creator>Lóczi, Lajos</creator><creator>Ketcheson, David I.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1212-126X</orcidid><orcidid>https://orcid.org/0000-0002-3456-2277</orcidid><orcidid>https://orcid.org/0000-0002-7999-5658</orcidid></search><sort><creationdate>20201201</creationdate><title>General relaxation methods for initial-value problems with application to multistep schemes</title><author>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranocha, Hendrik</creatorcontrib><creatorcontrib>Lóczi, Lajos</creatorcontrib><creatorcontrib>Ketcheson, David I.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranocha, Hendrik</au><au>Lóczi, Lajos</au><au>Ketcheson, David I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General relaxation methods for initial-value problems with application to multistep schemes</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>146</volume><issue>4</issue><spage>875</spage><epage>906</epage><pages>875-906</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-020-01158-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1212-126X</orcidid><orcidid>https://orcid.org/0000-0002-3456-2277</orcidid><orcidid>https://orcid.org/0000-0002-7999-5658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2020-12, Vol.146 (4), p.875-906
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s00211_020_01158_4
source Springer Link
subjects Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title General relaxation methods for initial-value problems with application to multistep schemes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20relaxation%20methods%20for%20initial-value%20problems%20with%20application%20to%20multistep%20schemes&rft.jtitle=Numerische%20Mathematik&rft.au=Ranocha,%20Hendrik&rft.date=2020-12-01&rft.volume=146&rft.issue=4&rft.spage=875&rft.epage=906&rft.pages=875-906&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-020-01158-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_020_01158_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true