Loading…
General relaxation methods for initial-value problems with application to multistep schemes
Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or hig...
Saved in:
Published in: | Numerische Mathematik 2020-12, Vol.146 (4), p.875-906 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3 |
container_end_page | 906 |
container_issue | 4 |
container_start_page | 875 |
container_title | Numerische Mathematik |
container_volume | 146 |
creator | Ranocha, Hendrik Lóczi, Lajos Ketcheson, David I. |
description | Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples. |
doi_str_mv | 10.1007/s00211-020-01158-4 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_020_01158_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_020_01158_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKv8QLTy6OnOUgYdhQE3CoKLkO5UOxnSD5KMj7-3tV27qruoc7kcQi45XHGA8joBCM4ZCGDAeVExdUQWoFXBpFDF8ZRBaFZo_XJKzlLaA_BypfiCvG6wx2gDjRjsp81-6GmHeTe4RNshUt_77G1g7zYckI5xqAN2iX74vKN2HINvZiYPtDuE7FPGkaZmhx2mc3LS2pDw4u8uyfPd7dP6nm0fNw_rmy1rhOaZOWxlqeSqrLjTYBU6AbxStq5d1UhRWq1rxNo5aAqBGiQ6Xls1ZVsorhq5JGLubeKQUsTWjNF3Nn4ZDuZHj5n1mEmP-dVj1ATJGUrTc_-G0eyHQ-ynnf9R35cqau8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General relaxation methods for initial-value problems with application to multistep schemes</title><source>Springer Link</source><creator>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</creator><creatorcontrib>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</creatorcontrib><description>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-020-01158-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2020-12, Vol.146 (4), p.875-906</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</citedby><cites>FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</cites><orcidid>0000-0002-1212-126X ; 0000-0002-3456-2277 ; 0000-0002-7999-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranocha, Hendrik</creatorcontrib><creatorcontrib>Lóczi, Lajos</creatorcontrib><creatorcontrib>Ketcheson, David I.</creatorcontrib><title>General relaxation methods for initial-value problems with application to multistep schemes</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKv8QLTy6OnOUgYdhQE3CoKLkO5UOxnSD5KMj7-3tV27qruoc7kcQi45XHGA8joBCM4ZCGDAeVExdUQWoFXBpFDF8ZRBaFZo_XJKzlLaA_BypfiCvG6wx2gDjRjsp81-6GmHeTe4RNshUt_77G1g7zYckI5xqAN2iX74vKN2HINvZiYPtDuE7FPGkaZmhx2mc3LS2pDw4u8uyfPd7dP6nm0fNw_rmy1rhOaZOWxlqeSqrLjTYBU6AbxStq5d1UhRWq1rxNo5aAqBGiQ6Xls1ZVsorhq5JGLubeKQUsTWjNF3Nn4ZDuZHj5n1mEmP-dVj1ATJGUrTc_-G0eyHQ-ynnf9R35cqau8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ranocha, Hendrik</creator><creator>Lóczi, Lajos</creator><creator>Ketcheson, David I.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1212-126X</orcidid><orcidid>https://orcid.org/0000-0002-3456-2277</orcidid><orcidid>https://orcid.org/0000-0002-7999-5658</orcidid></search><sort><creationdate>20201201</creationdate><title>General relaxation methods for initial-value problems with application to multistep schemes</title><author>Ranocha, Hendrik ; Lóczi, Lajos ; Ketcheson, David I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranocha, Hendrik</creatorcontrib><creatorcontrib>Lóczi, Lajos</creatorcontrib><creatorcontrib>Ketcheson, David I.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranocha, Hendrik</au><au>Lóczi, Lajos</au><au>Ketcheson, David I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General relaxation methods for initial-value problems with application to multistep schemes</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>146</volume><issue>4</issue><spage>875</spage><epage>906</epage><pages>875-906</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-020-01158-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1212-126X</orcidid><orcidid>https://orcid.org/0000-0002-3456-2277</orcidid><orcidid>https://orcid.org/0000-0002-7999-5658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2020-12, Vol.146 (4), p.875-906 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00211_020_01158_4 |
source | Springer Link |
subjects | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
title | General relaxation methods for initial-value problems with application to multistep schemes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20relaxation%20methods%20for%20initial-value%20problems%20with%20application%20to%20multistep%20schemes&rft.jtitle=Numerische%20Mathematik&rft.au=Ranocha,%20Hendrik&rft.date=2020-12-01&rft.volume=146&rft.issue=4&rft.spage=875&rft.epage=906&rft.pages=875-906&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-020-01158-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_020_01158_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-def37436781d90a4ed20184abbd8c327a99beebdd0c52e903ed1ba452ea5414c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |