Loading…

The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements

We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficient...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2021-04, Vol.147 (4), p.903-936
Main Authors: Aylwin, Rubén, Jerez-Hanckes, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443
container_end_page 936
container_issue 4
container_start_page 903
container_title Numerische Mathematik
container_volume 147
creator Aylwin, Rubén
Jerez-Hanckes, Carlos
description We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.
doi_str_mv 10.1007/s00211-021-01186-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_021_01186_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_021_01186_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVe8AMoFhoGlafxLatzUxLghzAzoNHSoMOPP20utazfn3tx85-bkIHQO9AIorS8zpQyAFCEUQEmiDtCMalERzkR1WHbKNKm0fj5GJzmvKYVaCpihl9Wbw8571444evw-2S7ZcUoOpym4jOOAfT_0Y4GC27hhxDmGaezjkHf8g_36dCHgD5t6u7vagLcpNoXNp-jI25Dd2d-co6eb69Xijiwfb-8XV0vSMsFG0olaK007YXWtmNKdamzdSi4E6yRYCtQzqRSAazi32kvfyEZCpVvGlROCzxHb_21TzDk5b7ap39j0bYCaXTtm344pYn7bMaqY-N6UCzy8umTWcUolfv7P9QO8KWiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</title><source>Springer Nature</source><creator>Aylwin, Rubén ; Jerez-Hanckes, Carlos</creator><creatorcontrib>Aylwin, Rubén ; Jerez-Hanckes, Carlos</creatorcontrib><description>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01186-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2021-04, Vol.147 (4), p.903-936</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</cites><orcidid>0000-0003-3622-7736 ; 0000-0001-8225-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Aylwin, Rubén</creatorcontrib><creatorcontrib>Jerez-Hanckes, Carlos</creatorcontrib><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AVe8AMoFhoGlafxLatzUxLghzAzoNHSoMOPP20utazfn3tx85-bkIHQO9AIorS8zpQyAFCEUQEmiDtCMalERzkR1WHbKNKm0fj5GJzmvKYVaCpihl9Wbw8571444evw-2S7ZcUoOpym4jOOAfT_0Y4GC27hhxDmGaezjkHf8g_36dCHgD5t6u7vagLcpNoXNp-jI25Dd2d-co6eb69Xijiwfb-8XV0vSMsFG0olaK007YXWtmNKdamzdSi4E6yRYCtQzqRSAazi32kvfyEZCpVvGlROCzxHb_21TzDk5b7ap39j0bYCaXTtm344pYn7bMaqY-N6UCzy8umTWcUolfv7P9QO8KWiZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Aylwin, Rubén</creator><creator>Jerez-Hanckes, Carlos</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3622-7736</orcidid><orcidid>https://orcid.org/0000-0001-8225-9558</orcidid></search><sort><creationdate>20210401</creationdate><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems</title><author>Aylwin, Rubén ; Jerez-Hanckes, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aylwin, Rubén</creatorcontrib><creatorcontrib>Jerez-Hanckes, Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aylwin, Rubén</au><au>Jerez-Hanckes, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>147</volume><issue>4</issue><spage>903</spage><epage>936</epage><pages>903-936</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01186-8</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3622-7736</orcidid><orcidid>https://orcid.org/0000-0001-8225-9558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2021-04, Vol.147 (4), p.903-936
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s00211_021_01186_8
source Springer Nature
subjects Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20quadrature%20rules%20on%20finite%20element%20solutions%20of%20Maxwell%20variational%20problems:%20Consistency%20estimates%20on%20meshes%20with%20straight%20and%20curved%20elements&rft.jtitle=Numerische%20Mathematik&rft.au=Aylwin,%20Rub%C3%A9n&rft.date=2021-04-01&rft.volume=147&rft.issue=4&rft.spage=903&rft.epage=936&rft.pages=903-936&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01186-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_021_01186_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true