Loading…
The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements
We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficient...
Saved in:
Published in: | Numerische Mathematik 2021-04, Vol.147 (4), p.903-936 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443 |
container_end_page | 936 |
container_issue | 4 |
container_start_page | 903 |
container_title | Numerische Mathematik |
container_volume | 147 |
creator | Aylwin, Rubén Jerez-Hanckes, Carlos |
description | We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete
a priori
error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules. |
doi_str_mv | 10.1007/s00211-021-01186-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00211_021_01186_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00211_021_01186_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVe8AMoFhoGlafxLatzUxLghzAzoNHSoMOPP20utazfn3tx85-bkIHQO9AIorS8zpQyAFCEUQEmiDtCMalERzkR1WHbKNKm0fj5GJzmvKYVaCpihl9Wbw8571444evw-2S7ZcUoOpym4jOOAfT_0Y4GC27hhxDmGaezjkHf8g_36dCHgD5t6u7vagLcpNoXNp-jI25Dd2d-co6eb69Xijiwfb-8XV0vSMsFG0olaK007YXWtmNKdamzdSi4E6yRYCtQzqRSAazi32kvfyEZCpVvGlROCzxHb_21TzDk5b7ap39j0bYCaXTtm344pYn7bMaqY-N6UCzy8umTWcUolfv7P9QO8KWiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</title><source>Springer Nature</source><creator>Aylwin, Rubén ; Jerez-Hanckes, Carlos</creator><creatorcontrib>Aylwin, Rubén ; Jerez-Hanckes, Carlos</creatorcontrib><description>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete
a priori
error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01186-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2021-04, Vol.147 (4), p.903-936</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</cites><orcidid>0000-0003-3622-7736 ; 0000-0001-8225-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Aylwin, Rubén</creatorcontrib><creatorcontrib>Jerez-Hanckes, Carlos</creatorcontrib><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete
a priori
error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AVe8AMoFhoGlafxLatzUxLghzAzoNHSoMOPP20utazfn3tx85-bkIHQO9AIorS8zpQyAFCEUQEmiDtCMalERzkR1WHbKNKm0fj5GJzmvKYVaCpihl9Wbw8571444evw-2S7ZcUoOpym4jOOAfT_0Y4GC27hhxDmGaezjkHf8g_36dCHgD5t6u7vagLcpNoXNp-jI25Dd2d-co6eb69Xijiwfb-8XV0vSMsFG0olaK007YXWtmNKdamzdSi4E6yRYCtQzqRSAazi32kvfyEZCpVvGlROCzxHb_21TzDk5b7ap39j0bYCaXTtm344pYn7bMaqY-N6UCzy8umTWcUolfv7P9QO8KWiZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Aylwin, Rubén</creator><creator>Jerez-Hanckes, Carlos</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3622-7736</orcidid><orcidid>https://orcid.org/0000-0001-8225-9558</orcidid></search><sort><creationdate>20210401</creationdate><title>The effect of quadrature rules on finite element solutions of Maxwell variational problems</title><author>Aylwin, Rubén ; Jerez-Hanckes, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aylwin, Rubén</creatorcontrib><creatorcontrib>Jerez-Hanckes, Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aylwin, Rubén</au><au>Jerez-Hanckes, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>147</volume><issue>4</issue><spage>903</spage><epage>936</epage><pages>903-936</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete
a priori
error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01186-8</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3622-7736</orcidid><orcidid>https://orcid.org/0000-0001-8225-9558</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2021-04, Vol.147 (4), p.903-936 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00211_021_01186_8 |
source | Springer Nature |
subjects | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
title | The effect of quadrature rules on finite element solutions of Maxwell variational problems: Consistency estimates on meshes with straight and curved elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20quadrature%20rules%20on%20finite%20element%20solutions%20of%20Maxwell%20variational%20problems:%20Consistency%20estimates%20on%20meshes%20with%20straight%20and%20curved%20elements&rft.jtitle=Numerische%20Mathematik&rft.au=Aylwin,%20Rub%C3%A9n&rft.date=2021-04-01&rft.volume=147&rft.issue=4&rft.spage=903&rft.epage=936&rft.pages=903-936&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01186-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00211_021_01186_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-d479890d4a978289d8ba7c63442d61a010f268811eb33a9f6fb6b6159c238e443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |