Loading…
Topological phase transitions in the vibration–rotation dynamics of an isolated molecule
One of the characteristic features of rotation–vibration dynamics is the existence of a variety of energy bands which result from organization of energy levels into bands depending on control parameters. Symmetry and topology aspects of the organization of energy bands and generic modifications of t...
Saved in:
Published in: | Theoretical chemistry accounts 2014-07, Vol.133 (7), Article 1501 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the characteristic features of rotation–vibration dynamics is the existence of a variety of energy bands which result from organization of energy levels into bands depending on control parameters. Symmetry and topology aspects of the organization of energy bands and generic modifications of this structure for molecular systems with symmetry are discussed in a way parallel to the description of topological quantum transitions extensively studied in condensed matter physics. A special class of axially symmetric molecular systems is analyzed. It is shown that only a finite number of different band structures are possible for rotation–vibration problem with a finite number of vibrational states in the case of continuous axial symmetry, whereas for problems with finite group symmetry an arbitrary large number of different band structures are formally allowed. |
---|---|
ISSN: | 1432-881X 1432-2234 |
DOI: | 10.1007/s00214-014-1501-x |