Loading…

Back to Balls in Billiards

We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε -ball about the initial point, in the pha...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2010-02, Vol.293 (3), p.837-866
Main Authors: Pène, Françoise, Saussol, Benoît
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43
cites cdi_FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43
container_end_page 866
container_issue 3
container_start_page 837
container_title Communications in mathematical physics
container_volume 293
creator Pène, Françoise
Saussol, Benoît
description We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε -ball about the initial point, in the phase space and also for the position, in the limit when ε → 0. We establish the existence of an almost sure convergence rate, and prove a convergence in distribution for the rescaled return times.
doi_str_mv 10.1007/s00220-009-0911-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00220_009_0911_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00220_009_0911_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoWEc_QFf9geh7L2maLO2gozDgRtchSRvpWFtJxoV_b0tdu3o8uOdyD2PXCLcIUN9lACLgAIaDQeTyhBUoBS2fOmUFAAIXCtU5u8j5AHOQlCrYTePCR3mcysYNQy77sWz6YehdavMlO4tuyN3V392wt8eH1-0T37_snrf3ex5I6yNX0ojgNZLDtlKVQOG198qr1mioiJzyspU1-k7UrlYxVtqbWrcUKRgTpdgwXHtDmnJOXbRfqf906cci2EXOrnJ23mwXObswtDJ5zo7vXbKH6TuN88x_oF-Drk8a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Back to Balls in Billiards</title><source>Springer Nature</source><creator>Pène, Françoise ; Saussol, Benoît</creator><creatorcontrib>Pène, Françoise ; Saussol, Benoît</creatorcontrib><description>We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε -ball about the initial point, in the phase space and also for the position, in the limit when ε → 0. We establish the existence of an almost sure convergence rate, and prove a convergence in distribution for the rescaled return times.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-009-0911-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2010-02, Vol.293 (3), p.837-866</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43</citedby><cites>FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><title>Back to Balls in Billiards</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε -ball about the initial point, in the phase space and also for the position, in the limit when ε → 0. We establish the existence of an almost sure convergence rate, and prove a convergence in distribution for the rescaled return times.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoWEc_QFf9geh7L2maLO2gozDgRtchSRvpWFtJxoV_b0tdu3o8uOdyD2PXCLcIUN9lACLgAIaDQeTyhBUoBS2fOmUFAAIXCtU5u8j5AHOQlCrYTePCR3mcysYNQy77sWz6YehdavMlO4tuyN3V392wt8eH1-0T37_snrf3ex5I6yNX0ojgNZLDtlKVQOG198qr1mioiJzyspU1-k7UrlYxVtqbWrcUKRgTpdgwXHtDmnJOXbRfqf906cci2EXOrnJ23mwXObswtDJ5zo7vXbKH6TuN88x_oF-Drk8a</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Pène, Françoise</creator><creator>Saussol, Benoît</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100201</creationdate><title>Back to Balls in Billiards</title><author>Pène, Françoise ; Saussol, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pène, Françoise</au><au>Saussol, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back to Balls in Billiards</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>293</volume><issue>3</issue><spage>837</spage><epage>866</epage><pages>837-866</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε -ball about the initial point, in the phase space and also for the position, in the limit when ε → 0. We establish the existence of an almost sure convergence rate, and prove a convergence in distribution for the rescaled return times.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00220-009-0911-4</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2010-02, Vol.293 (3), p.837-866
issn 0010-3616
1432-0916
language eng
recordid cdi_crossref_primary_10_1007_s00220_009_0911_4
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Back to Balls in Billiards
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20to%20Balls%20in%20Billiards&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=P%C3%A8ne,%20Fran%C3%A7oise&rft.date=2010-02-01&rft.volume=293&rft.issue=3&rft.spage=837&rft.epage=866&rft.pages=837-866&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-009-0911-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s00220_009_0911_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-6493cb812a1d565313b8bb6b6d980522a6b4d471be37a76ff58b978d2f2c99f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true