Loading…

Schur Polynomials and The Yang-Baxter Equation

We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map from to End , where V is a two-dimensional vector space such that if then R 12 ( g ) R 13 ( gh ) R 23 ( h ) = R 23 ( h ) R 13 ( gh ) R 12 ( g ). Here R i j denotes R appli...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2011-12, Vol.308 (2), p.281-301
Main Authors: Brubaker, Ben, Bump, Daniel, Friedberg, Solomon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3
cites cdi_FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3
container_end_page 301
container_issue 2
container_start_page 281
container_title Communications in mathematical physics
container_volume 308
creator Brubaker, Ben
Bump, Daniel
Friedberg, Solomon
description We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map from to End , where V is a two-dimensional vector space such that if then R 12 ( g ) R 13 ( gh ) R 23 ( h ) = R 23 ( h ) R 13 ( gh ) R 12 ( g ). Here R i j denotes R applied to the i , j components of . The image of this map consists of matrices whose nonzero coefficients a 1 ,  a 2 ,  b 1 ,  b 2 ,  c 1 ,  c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ , the six-vertex model is exactly solvable and equal to a Schur polynomial s λ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.
doi_str_mv 10.1007/s00220-011-1345-3
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00220_011_1345_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24765431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3</originalsourceid><addsrcrecordid>eNp9j7tOwzAUhi0EEqXwAGxZGF2OL3HiEapSkCqBRBmYrBPHaVOlTrFbib49roIYmc7w385HyC2DCQMo7iMA50CBMcqEzKk4IyMmBaegmTonIwAGVCimLslVjBsA0FypEZm82_UhZG99d_T9tsUuZujrbLl22Sf6FX3E770L2ezrgPu299fkokked_N7x-TjabacPtPF6_xl-rCgVpRyn4ZUbRViGiwB6pqryjUapaswPWuttiWHSjuthMsV5FjWuoDCyUY52wgrxoQNvTb0MQbXmF1otxiOhoE5AZsB2CRgcwI2ImXuhswOo8WuCehtG_-CXBYql4IlHx98MUl-5YLZ9IfgE84_5T9UVGR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Schur Polynomials and The Yang-Baxter Equation</title><source>Springer Link</source><creator>Brubaker, Ben ; Bump, Daniel ; Friedberg, Solomon</creator><creatorcontrib>Brubaker, Ben ; Bump, Daniel ; Friedberg, Solomon</creatorcontrib><description>We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map from to End , where V is a two-dimensional vector space such that if then R 12 ( g ) R 13 ( gh ) R 23 ( h ) = R 23 ( h ) R 13 ( gh ) R 12 ( g ). Here R i j denotes R applied to the i , j components of . The image of this map consists of matrices whose nonzero coefficients a 1 ,  a 2 ,  b 1 ,  b 2 ,  c 1 ,  c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ , the six-vertex model is exactly solvable and equal to a Schur polynomial s λ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-011-1345-3</identifier><identifier>CODEN: CMPHAY</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Exact sciences and technology ; Mathematical and Computational Physics ; Mathematical methods in physics ; Mathematical Physics ; Other topics in mathematical methods in physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2011-12, Vol.308 (2), p.281-301</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3</citedby><cites>FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24765431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brubaker, Ben</creatorcontrib><creatorcontrib>Bump, Daniel</creatorcontrib><creatorcontrib>Friedberg, Solomon</creatorcontrib><title>Schur Polynomials and The Yang-Baxter Equation</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map from to End , where V is a two-dimensional vector space such that if then R 12 ( g ) R 13 ( gh ) R 23 ( h ) = R 23 ( h ) R 13 ( gh ) R 12 ( g ). Here R i j denotes R applied to the i , j components of . The image of this map consists of matrices whose nonzero coefficients a 1 ,  a 2 ,  b 1 ,  b 2 ,  c 1 ,  c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ , the six-vertex model is exactly solvable and equal to a Schur polynomial s λ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical methods in physics</subject><subject>Mathematical Physics</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j7tOwzAUhi0EEqXwAGxZGF2OL3HiEapSkCqBRBmYrBPHaVOlTrFbib49roIYmc7w385HyC2DCQMo7iMA50CBMcqEzKk4IyMmBaegmTonIwAGVCimLslVjBsA0FypEZm82_UhZG99d_T9tsUuZujrbLl22Sf6FX3E770L2ezrgPu299fkokked_N7x-TjabacPtPF6_xl-rCgVpRyn4ZUbRViGiwB6pqryjUapaswPWuttiWHSjuthMsV5FjWuoDCyUY52wgrxoQNvTb0MQbXmF1otxiOhoE5AZsB2CRgcwI2ImXuhswOo8WuCehtG_-CXBYql4IlHx98MUl-5YLZ9IfgE84_5T9UVGR5</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Brubaker, Ben</creator><creator>Bump, Daniel</creator><creator>Friedberg, Solomon</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111201</creationdate><title>Schur Polynomials and The Yang-Baxter Equation</title><author>Brubaker, Ben ; Bump, Daniel ; Friedberg, Solomon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical methods in physics</topic><topic>Mathematical Physics</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brubaker, Ben</creatorcontrib><creatorcontrib>Bump, Daniel</creatorcontrib><creatorcontrib>Friedberg, Solomon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brubaker, Ben</au><au>Bump, Daniel</au><au>Friedberg, Solomon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schur Polynomials and The Yang-Baxter Equation</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>308</volume><issue>2</issue><spage>281</spage><epage>301</epage><pages>281-301</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><coden>CMPHAY</coden><abstract>We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map from to End , where V is a two-dimensional vector space such that if then R 12 ( g ) R 13 ( gh ) R 23 ( h ) = R 23 ( h ) R 13 ( gh ) R 12 ( g ). Here R i j denotes R applied to the i , j components of . The image of this map consists of matrices whose nonzero coefficients a 1 ,  a 2 ,  b 1 ,  b 2 ,  c 1 ,  c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ , the six-vertex model is exactly solvable and equal to a Schur polynomial s λ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00220-011-1345-3</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2011-12, Vol.308 (2), p.281-301
issn 0010-3616
1432-0916
language eng
recordid cdi_crossref_primary_10_1007_s00220_011_1345_3
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Exact sciences and technology
Mathematical and Computational Physics
Mathematical methods in physics
Mathematical Physics
Other topics in mathematical methods in physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Schur Polynomials and The Yang-Baxter Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schur%20Polynomials%20and%20The%20Yang-Baxter%20Equation&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Brubaker,%20Ben&rft.date=2011-12-01&rft.volume=308&rft.issue=2&rft.spage=281&rft.epage=301&rft.pages=281-301&rft.issn=0010-3616&rft.eissn=1432-0916&rft.coden=CMPHAY&rft_id=info:doi/10.1007/s00220-011-1345-3&rft_dat=%3Cpascalfrancis_cross%3E24765431%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-366dc6aa361800dd26bef9a4eba007cc9c820b9e963e5605a8d9707e4f6ecf3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true