Loading…

The Parisi Formula has a Unique Minimizer

In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979 ) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2015-05, Vol.335 (3), p.1429-1444
Main Authors: Auffinger, Antonio, Chen, Wei-Kuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003
cites cdi_FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003
container_end_page 1444
container_issue 3
container_start_page 1429
container_title Communications in mathematical physics
container_volume 335
creator Auffinger, Antonio
Chen, Wei-Kuo
description In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979 ) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263, 2006 ) and later generalized to the mixed p -spin models by Panchenko (Ann Probab 42(3):946–958, 2014 ). In this paper, we prove that the minimizer in Parisi’s formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.
doi_str_mv 10.1007/s00220-014-2254-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00220_014_2254_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00220_014_2254_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003</originalsourceid><addsrcrecordid>eNp9j7FOwzAURS0EEqHwAWxeGQzv2YmTjKiiFKmoHdrZctwX6qpJwCYD-XpShZnpLvdc3cPYPcIjAuRPEUBKEICpkDJLxXDBEkyVFFCivmQJAIJQGvU1u4nxCACl1DphD9sD8Y0NPnq-6ELTnyw_2Mgt37X-qyf-7lvf-IHCLbuq7SnS3V_O2G7xsp0vxWr9-jZ_XgmnsuJbKIlKZ9IBoSOweaVqqbPSKSdtrbCkfE821y4FKMhSVZRYEezrHNICLYCaMZx2XehiDFSbz-AbG34Mgjm7msnVjK7m7GqGkZETE8du-0HBHLs-tOPNf6BfOitWCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Parisi Formula has a Unique Minimizer</title><source>Springer Nature</source><creator>Auffinger, Antonio ; Chen, Wei-Kuo</creator><creatorcontrib>Auffinger, Antonio ; Chen, Wei-Kuo</creatorcontrib><description>In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979 ) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263, 2006 ) and later generalized to the mixed p -spin models by Panchenko (Ann Probab 42(3):946–958, 2014 ). In this paper, we prove that the minimizer in Parisi’s formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-014-2254-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2015-05, Vol.335 (3), p.1429-1444</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003</citedby><cites>FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Auffinger, Antonio</creatorcontrib><creatorcontrib>Chen, Wei-Kuo</creatorcontrib><title>The Parisi Formula has a Unique Minimizer</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979 ) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263, 2006 ) and later generalized to the mixed p -spin models by Panchenko (Ann Probab 42(3):946–958, 2014 ). In this paper, we prove that the minimizer in Parisi’s formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j7FOwzAURS0EEqHwAWxeGQzv2YmTjKiiFKmoHdrZctwX6qpJwCYD-XpShZnpLvdc3cPYPcIjAuRPEUBKEICpkDJLxXDBEkyVFFCivmQJAIJQGvU1u4nxCACl1DphD9sD8Y0NPnq-6ELTnyw_2Mgt37X-qyf-7lvf-IHCLbuq7SnS3V_O2G7xsp0vxWr9-jZ_XgmnsuJbKIlKZ9IBoSOweaVqqbPSKSdtrbCkfE821y4FKMhSVZRYEezrHNICLYCaMZx2XehiDFSbz-AbG34Mgjm7msnVjK7m7GqGkZETE8du-0HBHLs-tOPNf6BfOitWCA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Auffinger, Antonio</creator><creator>Chen, Wei-Kuo</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150501</creationdate><title>The Parisi Formula has a Unique Minimizer</title><author>Auffinger, Antonio ; Chen, Wei-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auffinger, Antonio</creatorcontrib><creatorcontrib>Chen, Wei-Kuo</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auffinger, Antonio</au><au>Chen, Wei-Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Parisi Formula has a Unique Minimizer</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>335</volume><issue>3</issue><spage>1429</spage><epage>1444</epage><pages>1429-1444</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979 ) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263, 2006 ) and later generalized to the mixed p -spin models by Panchenko (Ann Probab 42(3):946–958, 2014 ). In this paper, we prove that the minimizer in Parisi’s formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-014-2254-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2015-05, Vol.335 (3), p.1429-1444
issn 0010-3616
1432-0916
language eng
recordid cdi_crossref_primary_10_1007_s00220_014_2254_z
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title The Parisi Formula has a Unique Minimizer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Parisi%20Formula%20has%20a%20Unique%20Minimizer&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Auffinger,%20Antonio&rft.date=2015-05-01&rft.volume=335&rft.issue=3&rft.spage=1429&rft.epage=1444&rft.pages=1429-1444&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-014-2254-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s00220_014_2254_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-3213652c0e1ce0a7b3f2659c3c2af319e7dea76c4008eaeb891be0df70481a003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true