Loading…

Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2

The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Struct...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2024-04, Vol.405 (4), Article 89
Main Authors: Cannizzaro, Giuseppe, Gubinelli, Massimiliano, Toninelli, Fabio
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33
cites cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33
container_end_page
container_issue 4
container_start_page
container_title Communications in mathematical physics
container_volume 405
creator Cannizzaro, Giuseppe
Gubinelli, Massimiliano
Toninelli, Fabio
description The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a d -dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/PhysRevLett.54.2026 ). In both the critical $$d=2$$ d = 2 and super-critical $$d\ge 3$$ d ≥ 3 cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For $$d\ge 3$$ d ≥ 3 the scaling adopted is the classical diffusive one, while in $$d=2$$ d = 2 it is the so-called weak coupling scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.
doi_str_mv 10.1007/s00220-024-04966-z
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00220_024_04966_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00220_024_04966_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</originalsourceid><addsrcrecordid>eNot0EFPwyAcBXBiNLFOv4AnDruif6BAOercpsmSHdSbCaEMNszWKrQH--nnrKeXl7y8ww-hWwp3FEDdZwDGgAArCZRaSjKcoYKWnBHQVJ6jAoAC4ZLKS3SV8ycAaCZlgdZL2-ccbYMX-951ve1i22Qc2oS7ncevXet2NnfR4cc-bX3KeP49jnBs8FM8-CafynS6-dh6zK7RRbD77G_-c4LeF_O32TNZrZcvs4cVcZTLgVjrrGKV4l7SOtQ6BHAMhNBSVb4WdCOh0rWqlVCyFoFxYcGVQlXaUgie8wli469Lbc7JB_OV4sGmH0PBnEjMSGJ-ScwfiRn4EWhqVGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><source>Springer Nature</source><creator>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</creator><creatorcontrib>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</creatorcontrib><description>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a d -dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/PhysRevLett.54.2026 ). In both the critical $$d=2$$ d = 2 and super-critical $$d\ge 3$$ d ≥ 3 cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For $$d\ge 3$$ d ≥ 3 the scaling adopted is the classical diffusive one, while in $$d=2$$ d = 2 it is the so-called weak coupling scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-04966-z</identifier><language>eng</language><ispartof>Communications in mathematical physics, 2024-04, Vol.405 (4), Article 89</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</citedby><cites>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</cites><orcidid>0000-0003-1116-4169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cannizzaro, Giuseppe</creatorcontrib><creatorcontrib>Gubinelli, Massimiliano</creatorcontrib><creatorcontrib>Toninelli, Fabio</creatorcontrib><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><title>Communications in mathematical physics</title><description>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a d -dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/PhysRevLett.54.2026 ). In both the critical $$d=2$$ d = 2 and super-critical $$d\ge 3$$ d ≥ 3 cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For $$d\ge 3$$ d ≥ 3 the scaling adopted is the classical diffusive one, while in $$d=2$$ d = 2 it is the so-called weak coupling scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</description><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0EFPwyAcBXBiNLFOv4AnDruif6BAOercpsmSHdSbCaEMNszWKrQH--nnrKeXl7y8ww-hWwp3FEDdZwDGgAArCZRaSjKcoYKWnBHQVJ6jAoAC4ZLKS3SV8ycAaCZlgdZL2-ccbYMX-951ve1i22Qc2oS7ncevXet2NnfR4cc-bX3KeP49jnBs8FM8-CafynS6-dh6zK7RRbD77G_-c4LeF_O32TNZrZcvs4cVcZTLgVjrrGKV4l7SOtQ6BHAMhNBSVb4WdCOh0rWqlVCyFoFxYcGVQlXaUgie8wli469Lbc7JB_OV4sGmH0PBnEjMSGJ-ScwfiRn4EWhqVGY</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Cannizzaro, Giuseppe</creator><creator>Gubinelli, Massimiliano</creator><creator>Toninelli, Fabio</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1116-4169</orcidid></search><sort><creationdate>202404</creationdate><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><author>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannizzaro, Giuseppe</creatorcontrib><creatorcontrib>Gubinelli, Massimiliano</creatorcontrib><creatorcontrib>Toninelli, Fabio</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cannizzaro, Giuseppe</au><au>Gubinelli, Massimiliano</au><au>Toninelli, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</atitle><jtitle>Communications in mathematical physics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>405</volume><issue>4</issue><artnum>89</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a d -dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/PhysRevLett.54.2026 ). In both the critical $$d=2$$ d = 2 and super-critical $$d\ge 3$$ d ≥ 3 cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For $$d\ge 3$$ d ≥ 3 the scaling adopted is the classical diffusive one, while in $$d=2$$ d = 2 it is the so-called weak coupling scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</abstract><doi>10.1007/s00220-024-04966-z</doi><orcidid>https://orcid.org/0000-0003-1116-4169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2024-04, Vol.405 (4), Article 89
issn 0010-3616
1432-0916
language eng
recordid cdi_crossref_primary_10_1007_s00220_024_04966_z
source Springer Nature
title Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Fluctuations%20for%20the%20Stochastic%20Burgers%20Equation%20in%20Dimension%20$$d%5Cge%202&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Cannizzaro,%20Giuseppe&rft.date=2024-04&rft.volume=405&rft.issue=4&rft.artnum=89&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-04966-z&rft_dat=%3Ccrossref%3E10_1007_s00220_024_04966_z%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true