Loading…
Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2
The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Struct...
Saved in:
Published in: | Communications in mathematical physics 2024-04, Vol.405 (4), Article 89 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33 |
---|---|
cites | cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Communications in mathematical physics |
container_volume | 405 |
creator | Cannizzaro, Giuseppe Gubinelli, Massimiliano Toninelli, Fabio |
description | The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a
d
-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985.
https://doi.org/10.1103/PhysRevLett.54.2026
). In both the critical
$$d=2$$
d
=
2
and super-critical
$$d\ge 3$$
d
≥
3
cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For
$$d\ge 3$$
d
≥
3
the scaling adopted is the classical diffusive one, while in
$$d=2$$
d
=
2
it is the so-called
weak coupling
scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way. |
doi_str_mv | 10.1007/s00220-024-04966-z |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00220_024_04966_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00220_024_04966_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</originalsourceid><addsrcrecordid>eNot0EFPwyAcBXBiNLFOv4AnDruif6BAOercpsmSHdSbCaEMNszWKrQH--nnrKeXl7y8ww-hWwp3FEDdZwDGgAArCZRaSjKcoYKWnBHQVJ6jAoAC4ZLKS3SV8ycAaCZlgdZL2-ccbYMX-951ve1i22Qc2oS7ncevXet2NnfR4cc-bX3KeP49jnBs8FM8-CafynS6-dh6zK7RRbD77G_-c4LeF_O32TNZrZcvs4cVcZTLgVjrrGKV4l7SOtQ6BHAMhNBSVb4WdCOh0rWqlVCyFoFxYcGVQlXaUgie8wli469Lbc7JB_OV4sGmH0PBnEjMSGJ-ScwfiRn4EWhqVGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><source>Springer Nature</source><creator>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</creator><creatorcontrib>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</creatorcontrib><description>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a
d
-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985.
https://doi.org/10.1103/PhysRevLett.54.2026
). In both the critical
$$d=2$$
d
=
2
and super-critical
$$d\ge 3$$
d
≥
3
cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For
$$d\ge 3$$
d
≥
3
the scaling adopted is the classical diffusive one, while in
$$d=2$$
d
=
2
it is the so-called
weak coupling
scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-04966-z</identifier><language>eng</language><ispartof>Communications in mathematical physics, 2024-04, Vol.405 (4), Article 89</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</citedby><cites>FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</cites><orcidid>0000-0003-1116-4169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cannizzaro, Giuseppe</creatorcontrib><creatorcontrib>Gubinelli, Massimiliano</creatorcontrib><creatorcontrib>Toninelli, Fabio</creatorcontrib><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><title>Communications in mathematical physics</title><description>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a
d
-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985.
https://doi.org/10.1103/PhysRevLett.54.2026
). In both the critical
$$d=2$$
d
=
2
and super-critical
$$d\ge 3$$
d
≥
3
cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For
$$d\ge 3$$
d
≥
3
the scaling adopted is the classical diffusive one, while in
$$d=2$$
d
=
2
it is the so-called
weak coupling
scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</description><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0EFPwyAcBXBiNLFOv4AnDruif6BAOercpsmSHdSbCaEMNszWKrQH--nnrKeXl7y8ww-hWwp3FEDdZwDGgAArCZRaSjKcoYKWnBHQVJ6jAoAC4ZLKS3SV8ycAaCZlgdZL2-ccbYMX-951ve1i22Qc2oS7ncevXet2NnfR4cc-bX3KeP49jnBs8FM8-CafynS6-dh6zK7RRbD77G_-c4LeF_O32TNZrZcvs4cVcZTLgVjrrGKV4l7SOtQ6BHAMhNBSVb4WdCOh0rWqlVCyFoFxYcGVQlXaUgie8wli469Lbc7JB_OV4sGmH0PBnEjMSGJ-ScwfiRn4EWhqVGY</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Cannizzaro, Giuseppe</creator><creator>Gubinelli, Massimiliano</creator><creator>Toninelli, Fabio</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1116-4169</orcidid></search><sort><creationdate>202404</creationdate><title>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</title><author>Cannizzaro, Giuseppe ; Gubinelli, Massimiliano ; Toninelli, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannizzaro, Giuseppe</creatorcontrib><creatorcontrib>Gubinelli, Massimiliano</creatorcontrib><creatorcontrib>Toninelli, Fabio</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cannizzaro, Giuseppe</au><au>Gubinelli, Massimiliano</au><au>Toninelli, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2</atitle><jtitle>Communications in mathematical physics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>405</volume><issue>4</issue><artnum>89</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a
d
-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985.
https://doi.org/10.1103/PhysRevLett.54.2026
). In both the critical
$$d=2$$
d
=
2
and super-critical
$$d\ge 3$$
d
≥
3
cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For
$$d\ge 3$$
d
≥
3
the scaling adopted is the classical diffusive one, while in
$$d=2$$
d
=
2
it is the so-called
weak coupling
scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.</abstract><doi>10.1007/s00220-024-04966-z</doi><orcidid>https://orcid.org/0000-0003-1116-4169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2024-04, Vol.405 (4), Article 89 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00220_024_04966_z |
source | Springer Nature |
title | Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $$d\ge 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Fluctuations%20for%20the%20Stochastic%20Burgers%20Equation%20in%20Dimension%20$$d%5Cge%202&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Cannizzaro,%20Giuseppe&rft.date=2024-04&rft.volume=405&rft.issue=4&rft.artnum=89&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-04966-z&rft_dat=%3Ccrossref%3E10_1007_s00220_024_04966_z%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c136z-aaca72873e61bfb9ff0c20559678eb51d6089b7b7576b5f235a0c45789a10fe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |