Loading…
A relative Hilbert–Mumford criterion
We generalize the classical Hilbert–Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group G over a field k , to the relative situation of an equivariant, projective morphism X → Spec A to a noetherian k -algebra A . We also extend the classical p...
Saved in:
Published in: | Manuscripta mathematica 2015-11, Vol.148 (3-4), p.283-301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03 |
container_end_page | 301 |
container_issue | 3-4 |
container_start_page | 283 |
container_title | Manuscripta mathematica |
container_volume | 148 |
creator | Gulbrandsen, Martin G. Halle, Lars H. Hulek, Klaus |
description | We generalize the classical Hilbert–Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group
G
over a field
k
, to the relative situation of an equivariant, projective morphism
X
→
Spec
A
to a noetherian
k
-algebra
A
. We also extend the classical projectivity result for GIT quotients: the induced morphism
X
s
s
/
G
→
Spec
A
G
is projective. As an example of applications to moduli problems, we consider degenerations of Hilbert schemes of points. |
doi_str_mv | 10.1007/s00229-015-0744-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00229_015_0744_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00229_015_0744_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03</originalsourceid><addsrcrecordid>eNp9j71OwzAUhS0EEqHwAGyZ2Az3-ic_Y1UBrVTEArMV29coVZogO0Vi4x14Q56EVGFmusO539H5GLtGuEWA8i4BCFFzQM2hVIpXJyxDJQXHstKnLJtizUWBeM4uUtoBTGEpM3azzCN1zdh-UL5uO0tx_Pn6fjrswxB97mI7UmyH_pKdhaZLdPV3F-z14f5ltebb58fNarnlTupq5A6cp9oGHTQ03lvvC69QBrS187UiR41UhUPylpRA4Svv68pZAghOWZALhnOvi0NKkYJ5j-2-iZ8GwRxFzSxqJlFzFDXVxIiZSdNv_0bR7IZD7KeZ_0C_XApX_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A relative Hilbert–Mumford criterion</title><source>Springer Nature</source><creator>Gulbrandsen, Martin G. ; Halle, Lars H. ; Hulek, Klaus</creator><creatorcontrib>Gulbrandsen, Martin G. ; Halle, Lars H. ; Hulek, Klaus</creatorcontrib><description>We generalize the classical Hilbert–Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group
G
over a field
k
, to the relative situation of an equivariant, projective morphism
X
→
Spec
A
to a noetherian
k
-algebra
A
. We also extend the classical projectivity result for GIT quotients: the induced morphism
X
s
s
/
G
→
Spec
A
G
is projective. As an example of applications to moduli problems, we consider degenerations of Hilbert schemes of points.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-015-0744-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2015-11, Vol.148 (3-4), p.283-301</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03</citedby><cites>FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gulbrandsen, Martin G.</creatorcontrib><creatorcontrib>Halle, Lars H.</creatorcontrib><creatorcontrib>Hulek, Klaus</creatorcontrib><title>A relative Hilbert–Mumford criterion</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We generalize the classical Hilbert–Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group
G
over a field
k
, to the relative situation of an equivariant, projective morphism
X
→
Spec
A
to a noetherian
k
-algebra
A
. We also extend the classical projectivity result for GIT quotients: the induced morphism
X
s
s
/
G
→
Spec
A
G
is projective. As an example of applications to moduli problems, we consider degenerations of Hilbert schemes of points.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAUhS0EEqHwAGyZ2Az3-ic_Y1UBrVTEArMV29coVZogO0Vi4x14Q56EVGFmusO539H5GLtGuEWA8i4BCFFzQM2hVIpXJyxDJQXHstKnLJtizUWBeM4uUtoBTGEpM3azzCN1zdh-UL5uO0tx_Pn6fjrswxB97mI7UmyH_pKdhaZLdPV3F-z14f5ltebb58fNarnlTupq5A6cp9oGHTQ03lvvC69QBrS187UiR41UhUPylpRA4Svv68pZAghOWZALhnOvi0NKkYJ5j-2-iZ8GwRxFzSxqJlFzFDXVxIiZSdNv_0bR7IZD7KeZ_0C_XApX_A</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Gulbrandsen, Martin G.</creator><creator>Halle, Lars H.</creator><creator>Hulek, Klaus</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>A relative Hilbert–Mumford criterion</title><author>Gulbrandsen, Martin G. ; Halle, Lars H. ; Hulek, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulbrandsen, Martin G.</creatorcontrib><creatorcontrib>Halle, Lars H.</creatorcontrib><creatorcontrib>Hulek, Klaus</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulbrandsen, Martin G.</au><au>Halle, Lars H.</au><au>Hulek, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A relative Hilbert–Mumford criterion</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>148</volume><issue>3-4</issue><spage>283</spage><epage>301</epage><pages>283-301</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We generalize the classical Hilbert–Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group
G
over a field
k
, to the relative situation of an equivariant, projective morphism
X
→
Spec
A
to a noetherian
k
-algebra
A
. We also extend the classical projectivity result for GIT quotients: the induced morphism
X
s
s
/
G
→
Spec
A
G
is projective. As an example of applications to moduli problems, we consider degenerations of Hilbert schemes of points.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-015-0744-8</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2015-11, Vol.148 (3-4), p.283-301 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00229_015_0744_8 |
source | Springer Nature |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups |
title | A relative Hilbert–Mumford criterion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20relative%20Hilbert%E2%80%93Mumford%20criterion&rft.jtitle=Manuscripta%20mathematica&rft.au=Gulbrandsen,%20Martin%20G.&rft.date=2015-11-01&rft.volume=148&rft.issue=3-4&rft.spage=283&rft.epage=301&rft.pages=283-301&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-015-0744-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00229_015_0744_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-c0cde9bf5f50addbdd6d413f1b9cd94ecea346c1edbe4212d8dd98cbe00fc4b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |