Loading…

Groove geometry effects on turbulent heat transfer and fluid flow

The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube...

Full description

Saved in:
Bibliographic Details
Published in:Heat and mass transfer 2013-02, Vol.49 (2), p.185-195
Main Authors: Ramadhan, Abdulmajeed A., Al Anii, Yaser T., Shareef, Amer J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3
cites cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3
container_end_page 195
container_issue 2
container_start_page 185
container_title Heat and mass transfer
container_volume 49
creator Ramadhan, Abdulmajeed A.
Al Anii, Yaser T.
Shareef, Amer J.
description The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter ( e/D  = 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with ( e/D  = 0.1).
doi_str_mv 10.1007/s00231-012-1076-9
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00231_012_1076_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00231_012_1076_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFcfwFteIJpJ2qY5LouuwoIXPYc0nay7dBtJUmXf3pZ69jI_A_83DB8h98AfgHP1mDgXEhgHwYCrmukLUkAppw0auCQF16ViqgS4JjcpHad2XQpZkPU2hvCNdI_hhDmeKXqPLicaBprH2I49Dpl-os00Rzskj5HaoaO-Hw_zDD-35MrbPuHdX67Ix_PT--aF7d62r5v1jjkpqsyEgLaTFgRWpQPR2QatxEqg7tDVVe1067CyHDlq1zZSOe1VibUVVkjVoFwRWO66GFKK6M1XPJxsPBvgZnZgFgdmcmBmB0ZPjFiYNHWHPUZzDGMcpjf_gX4Bij1f9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><source>Springer Nature</source><creator>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</creator><creatorcontrib>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</creatorcontrib><description>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter ( e/D  = 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with ( e/D  = 0.1).</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-012-1076-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Original ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2013-02, Vol.49 (2), p.185-195</ispartof><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</citedby><cites>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramadhan, Abdulmajeed A.</creatorcontrib><creatorcontrib>Al Anii, Yaser T.</creatorcontrib><creatorcontrib>Shareef, Amer J.</creatorcontrib><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter ( e/D  = 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with ( e/D  = 0.1).</description><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Original</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFcfwFteIJpJ2qY5LouuwoIXPYc0nay7dBtJUmXf3pZ69jI_A_83DB8h98AfgHP1mDgXEhgHwYCrmukLUkAppw0auCQF16ViqgS4JjcpHad2XQpZkPU2hvCNdI_hhDmeKXqPLicaBprH2I49Dpl-os00Rzskj5HaoaO-Hw_zDD-35MrbPuHdX67Ix_PT--aF7d62r5v1jjkpqsyEgLaTFgRWpQPR2QatxEqg7tDVVe1067CyHDlq1zZSOe1VibUVVkjVoFwRWO66GFKK6M1XPJxsPBvgZnZgFgdmcmBmB0ZPjFiYNHWHPUZzDGMcpjf_gX4Bij1f9g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ramadhan, Abdulmajeed A.</creator><creator>Al Anii, Yaser T.</creator><creator>Shareef, Amer J.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><author>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Original</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadhan, Abdulmajeed A.</creatorcontrib><creatorcontrib>Al Anii, Yaser T.</creatorcontrib><creatorcontrib>Shareef, Amer J.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadhan, Abdulmajeed A.</au><au>Al Anii, Yaser T.</au><au>Shareef, Amer J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groove geometry effects on turbulent heat transfer and fluid flow</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>185</spage><epage>195</epage><pages>185-195</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter ( e/D  = 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with ( e/D  = 0.1).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00231-012-1076-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2013-02, Vol.49 (2), p.185-195
issn 0947-7411
1432-1181
language eng
recordid cdi_crossref_primary_10_1007_s00231_012_1076_9
source Springer Nature
subjects Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Original
Thermodynamics
title Groove geometry effects on turbulent heat transfer and fluid flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groove%20geometry%20effects%20on%20turbulent%20heat%20transfer%20and%20fluid%20flow&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Ramadhan,%20Abdulmajeed%20A.&rft.date=2013-02-01&rft.volume=49&rft.issue=2&rft.spage=185&rft.epage=195&rft.pages=185-195&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-012-1076-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s00231_012_1076_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true