Loading…
Groove geometry effects on turbulent heat transfer and fluid flow
The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube...
Saved in:
Published in: | Heat and mass transfer 2013-02, Vol.49 (2), p.185-195 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3 |
container_end_page | 195 |
container_issue | 2 |
container_start_page | 185 |
container_title | Heat and mass transfer |
container_volume | 49 |
creator | Ramadhan, Abdulmajeed A. Al Anii, Yaser T. Shareef, Amer J. |
description | The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter (
e/D
= 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with (
e/D
= 0.1). |
doi_str_mv | 10.1007/s00231-012-1076-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00231_012_1076_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00231_012_1076_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFcfwFteIJpJ2qY5LouuwoIXPYc0nay7dBtJUmXf3pZ69jI_A_83DB8h98AfgHP1mDgXEhgHwYCrmukLUkAppw0auCQF16ViqgS4JjcpHad2XQpZkPU2hvCNdI_hhDmeKXqPLicaBprH2I49Dpl-os00Rzskj5HaoaO-Hw_zDD-35MrbPuHdX67Ix_PT--aF7d62r5v1jjkpqsyEgLaTFgRWpQPR2QatxEqg7tDVVe1067CyHDlq1zZSOe1VibUVVkjVoFwRWO66GFKK6M1XPJxsPBvgZnZgFgdmcmBmB0ZPjFiYNHWHPUZzDGMcpjf_gX4Bij1f9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><source>Springer Nature</source><creator>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</creator><creatorcontrib>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</creatorcontrib><description>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter (
e/D
= 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with (
e/D
= 0.1).</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-012-1076-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Original ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2013-02, Vol.49 (2), p.185-195</ispartof><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</citedby><cites>FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramadhan, Abdulmajeed A.</creatorcontrib><creatorcontrib>Al Anii, Yaser T.</creatorcontrib><creatorcontrib>Shareef, Amer J.</creatorcontrib><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter (
e/D
= 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with (
e/D
= 0.1).</description><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Original</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFcfwFteIJpJ2qY5LouuwoIXPYc0nay7dBtJUmXf3pZ69jI_A_83DB8h98AfgHP1mDgXEhgHwYCrmukLUkAppw0auCQF16ViqgS4JjcpHad2XQpZkPU2hvCNdI_hhDmeKXqPLicaBprH2I49Dpl-os00Rzskj5HaoaO-Hw_zDD-35MrbPuHdX67Ix_PT--aF7d62r5v1jjkpqsyEgLaTFgRWpQPR2QatxEqg7tDVVe1067CyHDlq1zZSOe1VibUVVkjVoFwRWO66GFKK6M1XPJxsPBvgZnZgFgdmcmBmB0ZPjFiYNHWHPUZzDGMcpjf_gX4Bij1f9g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ramadhan, Abdulmajeed A.</creator><creator>Al Anii, Yaser T.</creator><creator>Shareef, Amer J.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Groove geometry effects on turbulent heat transfer and fluid flow</title><author>Ramadhan, Abdulmajeed A. ; Al Anii, Yaser T. ; Shareef, Amer J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Original</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadhan, Abdulmajeed A.</creatorcontrib><creatorcontrib>Al Anii, Yaser T.</creatorcontrib><creatorcontrib>Shareef, Amer J.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadhan, Abdulmajeed A.</au><au>Al Anii, Yaser T.</au><au>Shareef, Amer J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groove geometry effects on turbulent heat transfer and fluid flow</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>185</spage><epage>195</epage><pages>185-195</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter (
e/D
= 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with (
e/D
= 0.1).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00231-012-1076-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7411 |
ispartof | Heat and mass transfer, 2013-02, Vol.49 (2), p.185-195 |
issn | 0947-7411 1432-1181 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00231_012_1076_9 |
source | Springer Nature |
subjects | Engineering Engineering Thermodynamics Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Original Thermodynamics |
title | Groove geometry effects on turbulent heat transfer and fluid flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groove%20geometry%20effects%20on%20turbulent%20heat%20transfer%20and%20fluid%20flow&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Ramadhan,%20Abdulmajeed%20A.&rft.date=2013-02-01&rft.volume=49&rft.issue=2&rft.spage=185&rft.epage=195&rft.pages=185-195&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-012-1076-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s00231_012_1076_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-221bd3a12e54c12da8ea3e52e9dec656c9bce5a0e0e9cb837c9f74e6a2a2378e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |