Loading…

Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties

A nonlinear infinite line source problem with temperature-dependent thermal properties is investigated. By dividing the temperature range into number of subintervals and assuming that the thermal properties within each subinterval are constant, the problem is transformed to a cylindrical multiphase...

Full description

Saved in:
Bibliographic Details
Published in:Heat and mass transfer 2015-01, Vol.51 (1), p.143-152
Main Authors: Zhou, Yang, Wang, Yi-jiang, Wang, Jian-zhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103
cites cdi_FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103
container_end_page 152
container_issue 1
container_start_page 143
container_title Heat and mass transfer
container_volume 51
creator Zhou, Yang
Wang, Yi-jiang
Wang, Jian-zhou
description A nonlinear infinite line source problem with temperature-dependent thermal properties is investigated. By dividing the temperature range into number of subintervals and assuming that the thermal properties within each subinterval are constant, the problem is transformed to a cylindrical multiphase Stefan problem with no latent heat at the moving boundaries. An analytical solution is constructed by the similarity transformation technique. In most situations, the final solution is an approximate one. In order to verify the accuracy of the approximate solution, a group of exact solutions for special cases are also developed and compared. The general accuracy of the approximate solution increases as the number of subintervals increases. The results show that dividing the temperature range into the subintervals having same successive ratio of the thermal property can be an effective strategy. The number of subintervals required to keep the root mean square error in the temperature estimate under certain level is also discussed.
doi_str_mv 10.1007/s00231-014-1406-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00231_014_1406_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00231_014_1406_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaD-hOP6BWIyuWtQyhLwh0066FbI8aBVs2kkLJ31chXWc1DHPuhTmEPAJ_As7Vc-JcVMA4SAaS1wyuyAJkJRhAA9dkwbVUTEmAW3KX0r7QtRTVggzrYIdj9p0daJqGQ_ZToG6KNExh8AFtpD44H3xGetoLdIgd0jlO7YAj_fV5RzOOM0abDxFZjzOGHkOmeYdxLLUFLdfsMd2TG2eHhA__c0m-X1--Nu9s-_n2sVlvWSeaJrNayrbRildKS5SOS2uVw16qBlxT9U5Dv2plWzVcrOpOKyU6qe1KS1Fr7YBXSwLn3i5OKUV0Zo5-tPFogJuTLnPWZYouc9JloGTEOZMKG34wmn35tMhJF0J_hp1veg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties</title><source>Springer Link</source><creator>Zhou, Yang ; Wang, Yi-jiang ; Wang, Jian-zhou</creator><creatorcontrib>Zhou, Yang ; Wang, Yi-jiang ; Wang, Jian-zhou</creatorcontrib><description>A nonlinear infinite line source problem with temperature-dependent thermal properties is investigated. By dividing the temperature range into number of subintervals and assuming that the thermal properties within each subinterval are constant, the problem is transformed to a cylindrical multiphase Stefan problem with no latent heat at the moving boundaries. An analytical solution is constructed by the similarity transformation technique. In most situations, the final solution is an approximate one. In order to verify the accuracy of the approximate solution, a group of exact solutions for special cases are also developed and compared. The general accuracy of the approximate solution increases as the number of subintervals increases. The results show that dividing the temperature range into the subintervals having same successive ratio of the thermal property can be an effective strategy. The number of subintervals required to keep the root mean square error in the temperature estimate under certain level is also discussed.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-014-1406-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Short Communication ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2015-01, Vol.51 (1), p.143-152</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103</citedby><cites>FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Yi-jiang</creatorcontrib><creatorcontrib>Wang, Jian-zhou</creatorcontrib><title>Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>A nonlinear infinite line source problem with temperature-dependent thermal properties is investigated. By dividing the temperature range into number of subintervals and assuming that the thermal properties within each subinterval are constant, the problem is transformed to a cylindrical multiphase Stefan problem with no latent heat at the moving boundaries. An analytical solution is constructed by the similarity transformation technique. In most situations, the final solution is an approximate one. In order to verify the accuracy of the approximate solution, a group of exact solutions for special cases are also developed and compared. The general accuracy of the approximate solution increases as the number of subintervals increases. The results show that dividing the temperature range into the subintervals having same successive ratio of the thermal property can be an effective strategy. The number of subintervals required to keep the root mean square error in the temperature estimate under certain level is also discussed.</description><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Short Communication</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaD-hOP6BWIyuWtQyhLwh0066FbI8aBVs2kkLJ31chXWc1DHPuhTmEPAJ_As7Vc-JcVMA4SAaS1wyuyAJkJRhAA9dkwbVUTEmAW3KX0r7QtRTVggzrYIdj9p0daJqGQ_ZToG6KNExh8AFtpD44H3xGetoLdIgd0jlO7YAj_fV5RzOOM0abDxFZjzOGHkOmeYdxLLUFLdfsMd2TG2eHhA__c0m-X1--Nu9s-_n2sVlvWSeaJrNayrbRildKS5SOS2uVw16qBlxT9U5Dv2plWzVcrOpOKyU6qe1KS1Fr7YBXSwLn3i5OKUV0Zo5-tPFogJuTLnPWZYouc9JloGTEOZMKG34wmn35tMhJF0J_hp1veg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Zhou, Yang</creator><creator>Wang, Yi-jiang</creator><creator>Wang, Jian-zhou</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties</title><author>Zhou, Yang ; Wang, Yi-jiang ; Wang, Jian-zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Short Communication</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Yi-jiang</creatorcontrib><creatorcontrib>Wang, Jian-zhou</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yang</au><au>Wang, Yi-jiang</au><au>Wang, Jian-zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>143</spage><epage>152</epage><pages>143-152</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>A nonlinear infinite line source problem with temperature-dependent thermal properties is investigated. By dividing the temperature range into number of subintervals and assuming that the thermal properties within each subinterval are constant, the problem is transformed to a cylindrical multiphase Stefan problem with no latent heat at the moving boundaries. An analytical solution is constructed by the similarity transformation technique. In most situations, the final solution is an approximate one. In order to verify the accuracy of the approximate solution, a group of exact solutions for special cases are also developed and compared. The general accuracy of the approximate solution increases as the number of subintervals increases. The results show that dividing the temperature range into the subintervals having same successive ratio of the thermal property can be an effective strategy. The number of subintervals required to keep the root mean square error in the temperature estimate under certain level is also discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-014-1406-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2015-01, Vol.51 (1), p.143-152
issn 0947-7411
1432-1181
language eng
recordid cdi_crossref_primary_10_1007_s00231_014_1406_1
source Springer Link
subjects Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Short Communication
Thermodynamics
title Analytical solution for nonlinear infinite line source problem with temperature-dependent thermal properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20for%20nonlinear%20infinite%20line%20source%20problem%20with%20temperature-dependent%20thermal%20properties&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Zhou,%20Yang&rft.date=2015-01-01&rft.volume=51&rft.issue=1&rft.spage=143&rft.epage=152&rft.pages=143-152&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-014-1406-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s00231_014_1406_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-644b89703794e4f04aa7fed4781f83df91d5b4b380256c9772c49a5942699f103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true