Loading…

Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering

In this manuscript, we describe the development of two-dimensional, high-repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent combustion environments. In particular, we report what we believe to be the first sets of high-speed planar Rayleigh scattering images in turbulent no...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. B, Lasers and optics Lasers and optics, 2012-08, Vol.108 (2), p.377-392
Main Authors: Patton, R. A., Gabet, K. N., Jiang, N., Lempert, W. R., Sutton, J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this manuscript, we describe the development of two-dimensional, high-repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent combustion environments. In particular, we report what we believe to be the first sets of high-speed planar Rayleigh scattering images in turbulent non-premixed flames, yielding temporally correlated image sequences of the instantaneous temperature field. Sample results are presented for the well-characterized DLR flames A and B (CH 4 /H 2 /N 2 ) at Reynolds numbers of 15,200 and 22,800 at various axial positions downstream of the jet exit. The measurements are facilitated by the use of a user-calibrated, intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition-rate pulse-burst laser system (PBLS) at Ohio State University, which yields output energies up to 200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The spatial and temporal resolution of the imaging system and acquired images are compared to the finest spatial and temporal scales expected within the turbulent flames. One of the most important features of the PBLS is the ability to readily change the pulse-to-pulse spacing as the required temporal resolution necessitates it. The quality and accuracy of the high-speed temperature imaging results are assessed by comparing derived statistics (mean and standard deviation) to that of previously reported point-based reference data acquired at Sandia National Laboratories and available within the TNF workshop. Good agreement between the two data sets is obtained providing an initial indication of quantitative nature of the planar, kHz-rate temperature imaging results.
ISSN:0946-2171
1432-0649
DOI:10.1007/s00340-012-4880-5