Loading…

On the formation of string cavitation inside fuel injectors

The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been em...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2014, Vol.55 (1), Article 1662
Main Authors: Reid, B. A., Gavaises, M., Mitroglou, N., Hargrave, G. K., Garner, C. P., Long, E. J., McDavid, R. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23
cites cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23
container_end_page
container_issue 1
container_start_page
container_title Experiments in fluids
container_volume 55
creator Reid, B. A.
Gavaises, M.
Mitroglou, N.
Hargrave, G. K.
Garner, C. P.
Long, E. J.
McDavid, R. M.
description The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.
doi_str_mv 10.1007/s00348-013-1662-8
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00348_013_1662_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28616876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoOI7-AHfduIzmJmmS4koGXzAwG12H9DbRlJl2SDqC_94MFZeu7oNzDucj5BrYLTCm7zJjQhrKQFBQilNzQhYgBacAIE_JgmkuqDRKnpOLnHvGoG6YWZD7zVBNn74KY9q5KY5DNYYqTykOHxW6rzjNzzjk2BXVwW_L3nucxpQvyVlw2-yvfueSvD89vq1e6Hrz_Lp6WFMUYCbaSAeyUaFxPLTYOqlRa9OhQF17ANE43znpRVMOiW2pXzPua2x5i9y0XCwJzLmYxpyTD3af4s6lbwvMHuntTG8LvT3SW1M8N7Nn7zK6bUhuwJj_jNwoUEarouOzLu-PzD7ZfjykoeD8E_4Dc9lqLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the formation of string cavitation inside fuel injectors</title><source>Springer Link</source><creator>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</creator><creatorcontrib>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</creatorcontrib><description>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-013-1662-8</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computational methods in fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid dynamics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Instrumentation for fluid dynamics ; Physics ; Research Article</subject><ispartof>Experiments in fluids, 2014, Vol.55 (1), Article 1662</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</citedby><cites>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28616876$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, B. A.</creatorcontrib><creatorcontrib>Gavaises, M.</creatorcontrib><creatorcontrib>Mitroglou, N.</creatorcontrib><creatorcontrib>Hargrave, G. K.</creatorcontrib><creatorcontrib>Garner, C. P.</creatorcontrib><creatorcontrib>Long, E. J.</creatorcontrib><creatorcontrib>McDavid, R. M.</creatorcontrib><title>On the formation of string cavitation inside fuel injectors</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</description><subject>Applied sciences</subject><subject>Computational methods in fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Research Article</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoOI7-AHfduIzmJmmS4koGXzAwG12H9DbRlJl2SDqC_94MFZeu7oNzDucj5BrYLTCm7zJjQhrKQFBQilNzQhYgBacAIE_JgmkuqDRKnpOLnHvGoG6YWZD7zVBNn74KY9q5KY5DNYYqTykOHxW6rzjNzzjk2BXVwW_L3nucxpQvyVlw2-yvfueSvD89vq1e6Hrz_Lp6WFMUYCbaSAeyUaFxPLTYOqlRa9OhQF17ANE43znpRVMOiW2pXzPua2x5i9y0XCwJzLmYxpyTD3af4s6lbwvMHuntTG8LvT3SW1M8N7Nn7zK6bUhuwJj_jNwoUEarouOzLu-PzD7ZfjykoeD8E_4Dc9lqLw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Reid, B. A.</creator><creator>Gavaises, M.</creator><creator>Mitroglou, N.</creator><creator>Hargrave, G. K.</creator><creator>Garner, C. P.</creator><creator>Long, E. J.</creator><creator>McDavid, R. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>On the formation of string cavitation inside fuel injectors</title><author>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computational methods in fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, B. A.</creatorcontrib><creatorcontrib>Gavaises, M.</creatorcontrib><creatorcontrib>Mitroglou, N.</creatorcontrib><creatorcontrib>Hargrave, G. K.</creatorcontrib><creatorcontrib>Garner, C. P.</creatorcontrib><creatorcontrib>Long, E. J.</creatorcontrib><creatorcontrib>McDavid, R. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, B. A.</au><au>Gavaises, M.</au><au>Mitroglou, N.</au><au>Hargrave, G. K.</au><au>Garner, C. P.</au><au>Long, E. J.</au><au>McDavid, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the formation of string cavitation inside fuel injectors</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2014</date><risdate>2014</risdate><volume>55</volume><issue>1</issue><artnum>1662</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-013-1662-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2014, Vol.55 (1), Article 1662
issn 0723-4864
1432-1114
language eng
recordid cdi_crossref_primary_10_1007_s00348_013_1662_8
source Springer Link
subjects Applied sciences
Computational methods in fluid dynamics
Energy
Energy. Thermal use of fuels
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid dynamics
Fluid- and Aerodynamics
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Instrumentation for fluid dynamics
Physics
Research Article
title On the formation of string cavitation inside fuel injectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20formation%20of%20string%20cavitation%20inside%20fuel%20injectors&rft.jtitle=Experiments%20in%20fluids&rft.au=Reid,%20B.%20A.&rft.date=2014&rft.volume=55&rft.issue=1&rft.artnum=1662&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-013-1662-8&rft_dat=%3Cpascalfrancis_cross%3E28616876%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true