Loading…
On the formation of string cavitation inside fuel injectors
The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been em...
Saved in:
Published in: | Experiments in fluids 2014, Vol.55 (1), Article 1662 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Experiments in fluids |
container_volume | 55 |
creator | Reid, B. A. Gavaises, M. Mitroglou, N. Hargrave, G. K. Garner, C. P. Long, E. J. McDavid, R. M. |
description | The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow. |
doi_str_mv | 10.1007/s00348-013-1662-8 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00348_013_1662_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28616876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoOI7-AHfduIzmJmmS4koGXzAwG12H9DbRlJl2SDqC_94MFZeu7oNzDucj5BrYLTCm7zJjQhrKQFBQilNzQhYgBacAIE_JgmkuqDRKnpOLnHvGoG6YWZD7zVBNn74KY9q5KY5DNYYqTykOHxW6rzjNzzjk2BXVwW_L3nucxpQvyVlw2-yvfueSvD89vq1e6Hrz_Lp6WFMUYCbaSAeyUaFxPLTYOqlRa9OhQF17ANE43znpRVMOiW2pXzPua2x5i9y0XCwJzLmYxpyTD3af4s6lbwvMHuntTG8LvT3SW1M8N7Nn7zK6bUhuwJj_jNwoUEarouOzLu-PzD7ZfjykoeD8E_4Dc9lqLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the formation of string cavitation inside fuel injectors</title><source>Springer Link</source><creator>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</creator><creatorcontrib>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</creatorcontrib><description>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-013-1662-8</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computational methods in fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid dynamics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Instrumentation for fluid dynamics ; Physics ; Research Article</subject><ispartof>Experiments in fluids, 2014, Vol.55 (1), Article 1662</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</citedby><cites>FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28616876$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, B. A.</creatorcontrib><creatorcontrib>Gavaises, M.</creatorcontrib><creatorcontrib>Mitroglou, N.</creatorcontrib><creatorcontrib>Hargrave, G. K.</creatorcontrib><creatorcontrib>Garner, C. P.</creatorcontrib><creatorcontrib>Long, E. J.</creatorcontrib><creatorcontrib>McDavid, R. M.</creatorcontrib><title>On the formation of string cavitation inside fuel injectors</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</description><subject>Applied sciences</subject><subject>Computational methods in fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Research Article</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoOI7-AHfduIzmJmmS4koGXzAwG12H9DbRlJl2SDqC_94MFZeu7oNzDucj5BrYLTCm7zJjQhrKQFBQilNzQhYgBacAIE_JgmkuqDRKnpOLnHvGoG6YWZD7zVBNn74KY9q5KY5DNYYqTykOHxW6rzjNzzjk2BXVwW_L3nucxpQvyVlw2-yvfueSvD89vq1e6Hrz_Lp6WFMUYCbaSAeyUaFxPLTYOqlRa9OhQF17ANE43znpRVMOiW2pXzPua2x5i9y0XCwJzLmYxpyTD3af4s6lbwvMHuntTG8LvT3SW1M8N7Nn7zK6bUhuwJj_jNwoUEarouOzLu-PzD7ZfjykoeD8E_4Dc9lqLw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Reid, B. A.</creator><creator>Gavaises, M.</creator><creator>Mitroglou, N.</creator><creator>Hargrave, G. K.</creator><creator>Garner, C. P.</creator><creator>Long, E. J.</creator><creator>McDavid, R. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>On the formation of string cavitation inside fuel injectors</title><author>Reid, B. A. ; Gavaises, M. ; Mitroglou, N. ; Hargrave, G. K. ; Garner, C. P. ; Long, E. J. ; McDavid, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computational methods in fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, B. A.</creatorcontrib><creatorcontrib>Gavaises, M.</creatorcontrib><creatorcontrib>Mitroglou, N.</creatorcontrib><creatorcontrib>Hargrave, G. K.</creatorcontrib><creatorcontrib>Garner, C. P.</creatorcontrib><creatorcontrib>Long, E. J.</creatorcontrib><creatorcontrib>McDavid, R. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, B. A.</au><au>Gavaises, M.</au><au>Mitroglou, N.</au><au>Hargrave, G. K.</au><au>Garner, C. P.</au><au>Long, E. J.</au><au>McDavid, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the formation of string cavitation inside fuel injectors</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2014</date><risdate>2014</risdate><volume>55</volume><issue>1</issue><artnum>1662</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-013-1662-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2014, Vol.55 (1), Article 1662 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00348_013_1662_8 |
source | Springer Link |
subjects | Applied sciences Computational methods in fluid dynamics Energy Energy. Thermal use of fuels Engineering Engineering Fluid Dynamics Engineering Thermodynamics Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fluid dynamics Fluid- and Aerodynamics Fundamental areas of phenomenology (including applications) Heat and Mass Transfer Instrumentation for fluid dynamics Physics Research Article |
title | On the formation of string cavitation inside fuel injectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20formation%20of%20string%20cavitation%20inside%20fuel%20injectors&rft.jtitle=Experiments%20in%20fluids&rft.au=Reid,%20B.%20A.&rft.date=2014&rft.volume=55&rft.issue=1&rft.artnum=1662&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-013-1662-8&rft_dat=%3Cpascalfrancis_cross%3E28616876%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-94a1496f9a2fbcba47c778dc3c75e1139aeda4e39e114cb166502e5cb2bc28b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |