Loading…
Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent bounda...
Saved in:
Published in: | Experiments in fluids 2016-05, Vol.57 (5), Article 62 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Experiments in fluids |
container_volume | 57 |
creator | Zahradka, D. Parziale, N. J. Smith, M. S. Marineau, E. C. |
description | The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 %
N
2
/1 % Kr at momentum-thickness Reynolds numbers of
R
e
Θ
=
800
,
1400
, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (
y
/
δ
≈
0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein. |
doi_str_mv | 10.1007/s00348-016-2148-2 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00348_016_2148_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00348_016_2148_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4zttM4S6h4iSI2sLamthNSpU5lJ0j9e1KVNauZxT1XV4exW4QFApR3GUBpIwCXQuL0yDM2Q62kQER9zmZQSiW0WepLdpXzFgCLCsyMPbylw37oIx-oadrY8J_Q9a7dhSEdeBs58WFMm7ELceDv5L65XJR804_R0xTo6BDSNbuoqcvh5u_O2dfT4-fqRaw_nl9X92vhpDGDqOvSLYtNKKioFBmFsqrIEXgHnhSB9hX42qgiGDSq9NqjqhU6MNp5okLNGZ56XepzTqG2-9TuphkWwR4l2JMEO0mwRwlWTow8MXnKxiYku-3HFKeZ_0C_SbdfYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><source>Springer Link</source><creator>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</creator><creatorcontrib>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</creatorcontrib><description>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 %
N
2
/1 % Kr at momentum-thickness Reynolds numbers of
R
e
Θ
=
800
,
1400
, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (
y
/
δ
≈
0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-016-2148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Research Article</subject><ispartof>Experiments in fluids, 2016-05, Vol.57 (5), Article 62</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</citedby><cites>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</cites><orcidid>0000-0001-9880-1727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zahradka, D.</creatorcontrib><creatorcontrib>Parziale, N. J.</creatorcontrib><creatorcontrib>Smith, M. S.</creatorcontrib><creatorcontrib>Marineau, E. C.</creatorcontrib><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 %
N
2
/1 % Kr at momentum-thickness Reynolds numbers of
R
e
Θ
=
800
,
1400
, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (
y
/
δ
≈
0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</description><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Research Article</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4zttM4S6h4iSI2sLamthNSpU5lJ0j9e1KVNauZxT1XV4exW4QFApR3GUBpIwCXQuL0yDM2Q62kQER9zmZQSiW0WepLdpXzFgCLCsyMPbylw37oIx-oadrY8J_Q9a7dhSEdeBs58WFMm7ELceDv5L65XJR804_R0xTo6BDSNbuoqcvh5u_O2dfT4-fqRaw_nl9X92vhpDGDqOvSLYtNKKioFBmFsqrIEXgHnhSB9hX42qgiGDSq9NqjqhU6MNp5okLNGZ56XepzTqG2-9TuphkWwR4l2JMEO0mwRwlWTow8MXnKxiYku-3HFKeZ_0C_SbdfYw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zahradka, D.</creator><creator>Parziale, N. J.</creator><creator>Smith, M. S.</creator><creator>Marineau, E. C.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9880-1727</orcidid></search><sort><creationdate>20160501</creationdate><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><author>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahradka, D.</creatorcontrib><creatorcontrib>Parziale, N. J.</creatorcontrib><creatorcontrib>Smith, M. S.</creatorcontrib><creatorcontrib>Marineau, E. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahradka, D.</au><au>Parziale, N. J.</au><au>Smith, M. S.</au><au>Marineau, E. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>57</volume><issue>5</issue><artnum>62</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 %
N
2
/1 % Kr at momentum-thickness Reynolds numbers of
R
e
Θ
=
800
,
1400
, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (
y
/
δ
≈
0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-016-2148-2</doi><orcidid>https://orcid.org/0000-0001-9880-1727</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2016-05, Vol.57 (5), Article 62 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00348_016_2148_2 |
source | Springer Link |
subjects | Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid- and Aerodynamics Heat and Mass Transfer Research Article |
title | Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krypton%20tagging%20velocimetry%20in%20a%20turbulent%20Mach%202.7%20boundary%20layer&rft.jtitle=Experiments%20in%20fluids&rft.au=Zahradka,%20D.&rft.date=2016-05-01&rft.volume=57&rft.issue=5&rft.artnum=62&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-016-2148-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s00348_016_2148_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |