Loading…

Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent bounda...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2016-05, Vol.57 (5), Article 62
Main Authors: Zahradka, D., Parziale, N. J., Smith, M. S., Marineau, E. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53
cites cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53
container_end_page
container_issue 5
container_start_page
container_title Experiments in fluids
container_volume 57
creator Zahradka, D.
Parziale, N. J.
Smith, M. S.
Marineau, E. C.
description The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % N 2 /1 % Kr at momentum-thickness Reynolds numbers of R e Θ = 800 , 1400 , and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV ( y / δ ≈  0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.
doi_str_mv 10.1007/s00348-016-2148-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00348_016_2148_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00348_016_2148_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4zttM4S6h4iSI2sLamthNSpU5lJ0j9e1KVNauZxT1XV4exW4QFApR3GUBpIwCXQuL0yDM2Q62kQER9zmZQSiW0WepLdpXzFgCLCsyMPbylw37oIx-oadrY8J_Q9a7dhSEdeBs58WFMm7ELceDv5L65XJR804_R0xTo6BDSNbuoqcvh5u_O2dfT4-fqRaw_nl9X92vhpDGDqOvSLYtNKKioFBmFsqrIEXgHnhSB9hX42qgiGDSq9NqjqhU6MNp5okLNGZ56XepzTqG2-9TuphkWwR4l2JMEO0mwRwlWTow8MXnKxiYku-3HFKeZ_0C_SbdfYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><source>Springer Link</source><creator>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</creator><creatorcontrib>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</creatorcontrib><description>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % N 2 /1 % Kr at momentum-thickness Reynolds numbers of R e Θ = 800 , 1400 , and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV ( y / δ ≈  0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-016-2148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Research Article</subject><ispartof>Experiments in fluids, 2016-05, Vol.57 (5), Article 62</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</citedby><cites>FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</cites><orcidid>0000-0001-9880-1727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zahradka, D.</creatorcontrib><creatorcontrib>Parziale, N. J.</creatorcontrib><creatorcontrib>Smith, M. S.</creatorcontrib><creatorcontrib>Marineau, E. C.</creatorcontrib><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % N 2 /1 % Kr at momentum-thickness Reynolds numbers of R e Θ = 800 , 1400 , and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV ( y / δ ≈  0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</description><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Research Article</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4zttM4S6h4iSI2sLamthNSpU5lJ0j9e1KVNauZxT1XV4exW4QFApR3GUBpIwCXQuL0yDM2Q62kQER9zmZQSiW0WepLdpXzFgCLCsyMPbylw37oIx-oadrY8J_Q9a7dhSEdeBs58WFMm7ELceDv5L65XJR804_R0xTo6BDSNbuoqcvh5u_O2dfT4-fqRaw_nl9X92vhpDGDqOvSLYtNKKioFBmFsqrIEXgHnhSB9hX42qgiGDSq9NqjqhU6MNp5okLNGZ56XepzTqG2-9TuphkWwR4l2JMEO0mwRwlWTow8MXnKxiYku-3HFKeZ_0C_SbdfYw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zahradka, D.</creator><creator>Parziale, N. J.</creator><creator>Smith, M. S.</creator><creator>Marineau, E. C.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9880-1727</orcidid></search><sort><creationdate>20160501</creationdate><title>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</title><author>Zahradka, D. ; Parziale, N. J. ; Smith, M. S. ; Marineau, E. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahradka, D.</creatorcontrib><creatorcontrib>Parziale, N. J.</creatorcontrib><creatorcontrib>Smith, M. S.</creatorcontrib><creatorcontrib>Marineau, E. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahradka, D.</au><au>Parziale, N. J.</au><au>Smith, M. S.</au><au>Marineau, E. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>57</volume><issue>5</issue><artnum>62</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the “Mach 3 Calibration Tunnel” at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % N 2 /1 % Kr at momentum-thickness Reynolds numbers of R e Θ = 800 , 1400 , and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV ( y / δ ≈  0.1–0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-016-2148-2</doi><orcidid>https://orcid.org/0000-0001-9880-1727</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2016-05, Vol.57 (5), Article 62
issn 0723-4864
1432-1114
language eng
recordid cdi_crossref_primary_10_1007_s00348_016_2148_2
source Springer Link
subjects Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Heat and Mass Transfer
Research Article
title Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krypton%20tagging%20velocimetry%20in%20a%20turbulent%20Mach%202.7%20boundary%20layer&rft.jtitle=Experiments%20in%20fluids&rft.au=Zahradka,%20D.&rft.date=2016-05-01&rft.volume=57&rft.issue=5&rft.artnum=62&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-016-2148-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s00348_016_2148_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-ff7c65be5a593a831299aca0dc0da3a04d90df835e81837d4d13f31c084cdaa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true