Loading…
The Number of Seymour Vertices in Random Tournaments and Digraphs
Seymour’s distance two conjecture states that in any digraph there exists a vertex (a “Seymour vertex”) that has at least as many neighbors at distance two as it does at distance one. We explore the validity of probabilistic statements along lines suggested by Seymour’s conjecture, proving that almo...
Saved in:
Published in: | Graphs and combinatorics 2016-09, Vol.32 (5), p.1805-1816 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83 |
container_end_page | 1816 |
container_issue | 5 |
container_start_page | 1805 |
container_title | Graphs and combinatorics |
container_volume | 32 |
creator | Cohn, Zachary Godbole, Anant Harkness, Elizabeth Wright Zhang, Yiguang |
description | Seymour’s distance two conjecture states that in any digraph there exists a vertex (a “Seymour vertex”) that has at least as many neighbors at distance two as it does at distance one. We explore the validity of probabilistic statements along lines suggested by Seymour’s conjecture, proving that almost surely there are a “large” number of Seymour vertices in random tournaments and “even more” in general random digraphs. |
doi_str_mv | 10.1007/s00373-015-1672-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00373_015_1672_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00373_015_1672_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AoZdJ3biY1V-pQokKFwtx9m0qZqkstND3x6XcmYvK83OrDQfY7cIdwhQ3EeArMgEoBKoCynMGZtgnimhDObnbAIGMV3RXLKrGDcAoDCHCZst18Tf9l1FgQ8N_6RDN-wD_6Ywtp4ib3v-4fp66Pgy6b3rqB8jTwp_aFfB7dbxml00bhvp5m9P2dfT43L-Ihbvz6_z2UJ4WZajwMoZD5lCLZ0zSroy06BBachr5fPCS01ee6lIGUVpSpA1Nso1nnyV3FOGp78-DDEGauwutJ0LB4tgjwzsiYFNDOyRgTUpI0-ZmLz9ioLd_LbYxn9CP3D0XtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Number of Seymour Vertices in Random Tournaments and Digraphs</title><source>Springer Nature</source><creator>Cohn, Zachary ; Godbole, Anant ; Harkness, Elizabeth Wright ; Zhang, Yiguang</creator><creatorcontrib>Cohn, Zachary ; Godbole, Anant ; Harkness, Elizabeth Wright ; Zhang, Yiguang</creatorcontrib><description>Seymour’s distance two conjecture states that in any digraph there exists a vertex (a “Seymour vertex”) that has at least as many neighbors at distance two as it does at distance one. We explore the validity of probabilistic statements along lines suggested by Seymour’s conjecture, proving that almost surely there are a “large” number of Seymour vertices in random tournaments and “even more” in general random digraphs.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-015-1672-9</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Engineering Design ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2016-09, Vol.32 (5), p.1805-1816</ispartof><rights>Springer Japan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83</citedby><cites>FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cohn, Zachary</creatorcontrib><creatorcontrib>Godbole, Anant</creatorcontrib><creatorcontrib>Harkness, Elizabeth Wright</creatorcontrib><creatorcontrib>Zhang, Yiguang</creatorcontrib><title>The Number of Seymour Vertices in Random Tournaments and Digraphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Seymour’s distance two conjecture states that in any digraph there exists a vertex (a “Seymour vertex”) that has at least as many neighbors at distance two as it does at distance one. We explore the validity of probabilistic statements along lines suggested by Seymour’s conjecture, proving that almost surely there are a “large” number of Seymour vertices in random tournaments and “even more” in general random digraphs.</description><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AoZdJ3biY1V-pQokKFwtx9m0qZqkstND3x6XcmYvK83OrDQfY7cIdwhQ3EeArMgEoBKoCynMGZtgnimhDObnbAIGMV3RXLKrGDcAoDCHCZst18Tf9l1FgQ8N_6RDN-wD_6Ywtp4ib3v-4fp66Pgy6b3rqB8jTwp_aFfB7dbxml00bhvp5m9P2dfT43L-Ihbvz6_z2UJ4WZajwMoZD5lCLZ0zSroy06BBachr5fPCS01ee6lIGUVpSpA1Nso1nnyV3FOGp78-DDEGauwutJ0LB4tgjwzsiYFNDOyRgTUpI0-ZmLz9ioLd_LbYxn9CP3D0XtM</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Cohn, Zachary</creator><creator>Godbole, Anant</creator><creator>Harkness, Elizabeth Wright</creator><creator>Zhang, Yiguang</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>The Number of Seymour Vertices in Random Tournaments and Digraphs</title><author>Cohn, Zachary ; Godbole, Anant ; Harkness, Elizabeth Wright ; Zhang, Yiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohn, Zachary</creatorcontrib><creatorcontrib>Godbole, Anant</creatorcontrib><creatorcontrib>Harkness, Elizabeth Wright</creatorcontrib><creatorcontrib>Zhang, Yiguang</creatorcontrib><collection>CrossRef</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohn, Zachary</au><au>Godbole, Anant</au><au>Harkness, Elizabeth Wright</au><au>Zhang, Yiguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Number of Seymour Vertices in Random Tournaments and Digraphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>32</volume><issue>5</issue><spage>1805</spage><epage>1816</epage><pages>1805-1816</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Seymour’s distance two conjecture states that in any digraph there exists a vertex (a “Seymour vertex”) that has at least as many neighbors at distance two as it does at distance one. We explore the validity of probabilistic statements along lines suggested by Seymour’s conjecture, proving that almost surely there are a “large” number of Seymour vertices in random tournaments and “even more” in general random digraphs.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-015-1672-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2016-09, Vol.32 (5), p.1805-1816 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00373_015_1672_9 |
source | Springer Nature |
subjects | Combinatorics Engineering Design Mathematics Mathematics and Statistics Original Paper |
title | The Number of Seymour Vertices in Random Tournaments and Digraphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Number%20of%20Seymour%20Vertices%20in%20Random%20Tournaments%20and%20Digraphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Cohn,%20Zachary&rft.date=2016-09-01&rft.volume=32&rft.issue=5&rft.spage=1805&rft.epage=1816&rft.pages=1805-1816&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-015-1672-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s00373_015_1672_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1ba9c035162aa952a8360605604d5c47c26ec6c25e595eeee802d1f5afcecba83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |