Loading…
Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure
The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, K Ca channels contribute to its regulation. Wild-type (BL) and double-transgenic female...
Saved in:
Published in: | Pflügers Archiv 2015-04, Vol.467 (4), p.817-831 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3 |
container_end_page | 831 |
container_issue | 4 |
container_start_page | 817 |
container_title | Pflügers Archiv |
container_volume | 467 |
creator | Waeckel, Ludovic Bertin, Florence Clavreul, Nicolas Damery, Thibaut Köhler, Ralf Paysant, Jérôme Sansilvestri-Morel, Patricia Simonet, Serge Vayssettes-Courchay, Christine Wulff, Heike Verbeuren, Tony J. Félétou, Michel |
description | The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, K
Ca
channels contribute to its regulation. Wild-type (BL) and double-transgenic female mice expressing human angiotensinogen and renin (AR) genes received either control or a high-salt diet associated to a nitric oxide (NO) synthase inhibitor treatment (BLSL and ARSL). Changes in renal perfusion pressure (RPP) were measured in isolated perfused kidneys. BLSL and AR were moderately hypertensive without kidney disease while ARSL developed severe hypertension and renal failure. In the four groups, methacholine induced biphasic endothelium-dependent responses, a transient decrease in RPP followed by a cyclooxygenase-dependent increase in RPP. In the presence or not of indomethacin, the vasodilatations were poorly sensitive to NO synthase inhibition. However, in the presence of cyclooxygenase and NO synthase inhibitors, apamin, and/or TRAM-34, blockers of K
Ca
2.3 and K
Ca
3.1, respectively, abolished the decrease in RPP in response to either methacholine or the two activators of K
Ca
2.3/K
Ca
3.1, NS309, and SKA-31. Thus, K
Ca
2/3 channels play a major role in the regulation of murine kidney perfusion and this mechanism is maintained in hypertension, even when severe and associated with kidney damage. |
doi_str_mv | 10.1007/s00424-014-1542-y |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00424_014_1542_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24903240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwADbIFzD4r3GyRBV_AgkWsI4cZ9ymSpzKTopyEc6LQwpLViN73nuj9yF0yeg1o1TdBEoll4QySdhScjIcoTmTghNOmThGc0oFI4lK0hk6C2FLKeUy5adoxmVGBZd0jr7ePATweyixh3Vf665qHW5tfDld4x1424fxaxd1ofeAiwGHRtc11q7ElevAN1BWugNsWlf2ptPOAH5eaWw22jmoQ1ThzRCjOnCh2gNuqqj4rLoNbv3PbPvucNDqqo5XztGJ1XWAi8NcoI_7u_fVI3l5fXha3b4QI3g2EDH2oMIIxU1aSJAqzRgURZpJAzaxSSm0KNNkmZYqZTpZFkpBwmyiDC9AWbFAbMo1vg3Bg813vmq0H3JG85FxPjHOI-N8ZJwP0XM1eXZ9Eav_OX6hRgGfBCGu3Bp8vm17H9uFf1K_AfDDi7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure</title><source>Springer Nature</source><creator>Waeckel, Ludovic ; Bertin, Florence ; Clavreul, Nicolas ; Damery, Thibaut ; Köhler, Ralf ; Paysant, Jérôme ; Sansilvestri-Morel, Patricia ; Simonet, Serge ; Vayssettes-Courchay, Christine ; Wulff, Heike ; Verbeuren, Tony J. ; Félétou, Michel</creator><creatorcontrib>Waeckel, Ludovic ; Bertin, Florence ; Clavreul, Nicolas ; Damery, Thibaut ; Köhler, Ralf ; Paysant, Jérôme ; Sansilvestri-Morel, Patricia ; Simonet, Serge ; Vayssettes-Courchay, Christine ; Wulff, Heike ; Verbeuren, Tony J. ; Félétou, Michel</creatorcontrib><description>The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, K
Ca
channels contribute to its regulation. Wild-type (BL) and double-transgenic female mice expressing human angiotensinogen and renin (AR) genes received either control or a high-salt diet associated to a nitric oxide (NO) synthase inhibitor treatment (BLSL and ARSL). Changes in renal perfusion pressure (RPP) were measured in isolated perfused kidneys. BLSL and AR were moderately hypertensive without kidney disease while ARSL developed severe hypertension and renal failure. In the four groups, methacholine induced biphasic endothelium-dependent responses, a transient decrease in RPP followed by a cyclooxygenase-dependent increase in RPP. In the presence or not of indomethacin, the vasodilatations were poorly sensitive to NO synthase inhibition. However, in the presence of cyclooxygenase and NO synthase inhibitors, apamin, and/or TRAM-34, blockers of K
Ca
2.3 and K
Ca
3.1, respectively, abolished the decrease in RPP in response to either methacholine or the two activators of K
Ca
2.3/K
Ca
3.1, NS309, and SKA-31. Thus, K
Ca
2/3 channels play a major role in the regulation of murine kidney perfusion and this mechanism is maintained in hypertension, even when severe and associated with kidney damage.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-014-1542-y</identifier><identifier>PMID: 24903240</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiotensinogen - genetics ; Angiotensinogen - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiology ; Female ; Human Physiology ; Humans ; Hypertension, Renovascular - etiology ; Hypertension, Renovascular - metabolism ; Hypertension, Renovascular - physiopathology ; Indomethacin - pharmacology ; Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors ; Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism ; Methacholine Chloride - pharmacology ; Mice ; Mice, Inbred C57BL ; Molecular Medicine ; Neurosciences ; Nitric Oxide Synthase - antagonists & inhibitors ; Organ Physiology ; Potassium Channel Blockers - pharmacology ; Receptors ; Renal Insufficiency - etiology ; Renal Insufficiency - metabolism ; Renal Insufficiency - physiopathology ; Renin - genetics ; Renin - metabolism ; Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors ; Small-Conductance Calcium-Activated Potassium Channels - metabolism ; Sodium, Dietary - adverse effects ; Vasodilation</subject><ispartof>Pflügers Archiv, 2015-04, Vol.467 (4), p.817-831</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3</citedby><cites>FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24903240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waeckel, Ludovic</creatorcontrib><creatorcontrib>Bertin, Florence</creatorcontrib><creatorcontrib>Clavreul, Nicolas</creatorcontrib><creatorcontrib>Damery, Thibaut</creatorcontrib><creatorcontrib>Köhler, Ralf</creatorcontrib><creatorcontrib>Paysant, Jérôme</creatorcontrib><creatorcontrib>Sansilvestri-Morel, Patricia</creatorcontrib><creatorcontrib>Simonet, Serge</creatorcontrib><creatorcontrib>Vayssettes-Courchay, Christine</creatorcontrib><creatorcontrib>Wulff, Heike</creatorcontrib><creatorcontrib>Verbeuren, Tony J.</creatorcontrib><creatorcontrib>Félétou, Michel</creatorcontrib><title>Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, K
Ca
channels contribute to its regulation. Wild-type (BL) and double-transgenic female mice expressing human angiotensinogen and renin (AR) genes received either control or a high-salt diet associated to a nitric oxide (NO) synthase inhibitor treatment (BLSL and ARSL). Changes in renal perfusion pressure (RPP) were measured in isolated perfused kidneys. BLSL and AR were moderately hypertensive without kidney disease while ARSL developed severe hypertension and renal failure. In the four groups, methacholine induced biphasic endothelium-dependent responses, a transient decrease in RPP followed by a cyclooxygenase-dependent increase in RPP. In the presence or not of indomethacin, the vasodilatations were poorly sensitive to NO synthase inhibition. However, in the presence of cyclooxygenase and NO synthase inhibitors, apamin, and/or TRAM-34, blockers of K
Ca
2.3 and K
Ca
3.1, respectively, abolished the decrease in RPP in response to either methacholine or the two activators of K
Ca
2.3/K
Ca
3.1, NS309, and SKA-31. Thus, K
Ca
2/3 channels play a major role in the regulation of murine kidney perfusion and this mechanism is maintained in hypertension, even when severe and associated with kidney damage.</description><subject>Angiotensinogen - genetics</subject><subject>Angiotensinogen - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiology</subject><subject>Female</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hypertension, Renovascular - etiology</subject><subject>Hypertension, Renovascular - metabolism</subject><subject>Hypertension, Renovascular - physiopathology</subject><subject>Indomethacin - pharmacology</subject><subject>Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</subject><subject>Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Methacholine Chloride - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Nitric Oxide Synthase - antagonists & inhibitors</subject><subject>Organ Physiology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Receptors</subject><subject>Renal Insufficiency - etiology</subject><subject>Renal Insufficiency - metabolism</subject><subject>Renal Insufficiency - physiopathology</subject><subject>Renin - genetics</subject><subject>Renin - metabolism</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Sodium, Dietary - adverse effects</subject><subject>Vasodilation</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EoqVwADbIFzD4r3GyRBV_AgkWsI4cZ9ymSpzKTopyEc6LQwpLViN73nuj9yF0yeg1o1TdBEoll4QySdhScjIcoTmTghNOmThGc0oFI4lK0hk6C2FLKeUy5adoxmVGBZd0jr7ePATweyixh3Vf665qHW5tfDld4x1424fxaxd1ofeAiwGHRtc11q7ElevAN1BWugNsWlf2ptPOAH5eaWw22jmoQ1ThzRCjOnCh2gNuqqj4rLoNbv3PbPvucNDqqo5XztGJ1XWAi8NcoI_7u_fVI3l5fXha3b4QI3g2EDH2oMIIxU1aSJAqzRgURZpJAzaxSSm0KNNkmZYqZTpZFkpBwmyiDC9AWbFAbMo1vg3Bg813vmq0H3JG85FxPjHOI-N8ZJwP0XM1eXZ9Eav_OX6hRgGfBCGu3Bp8vm17H9uFf1K_AfDDi7w</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Waeckel, Ludovic</creator><creator>Bertin, Florence</creator><creator>Clavreul, Nicolas</creator><creator>Damery, Thibaut</creator><creator>Köhler, Ralf</creator><creator>Paysant, Jérôme</creator><creator>Sansilvestri-Morel, Patricia</creator><creator>Simonet, Serge</creator><creator>Vayssettes-Courchay, Christine</creator><creator>Wulff, Heike</creator><creator>Verbeuren, Tony J.</creator><creator>Félétou, Michel</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure</title><author>Waeckel, Ludovic ; Bertin, Florence ; Clavreul, Nicolas ; Damery, Thibaut ; Köhler, Ralf ; Paysant, Jérôme ; Sansilvestri-Morel, Patricia ; Simonet, Serge ; Vayssettes-Courchay, Christine ; Wulff, Heike ; Verbeuren, Tony J. ; Félétou, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angiotensinogen - genetics</topic><topic>Angiotensinogen - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiology</topic><topic>Female</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hypertension, Renovascular - etiology</topic><topic>Hypertension, Renovascular - metabolism</topic><topic>Hypertension, Renovascular - physiopathology</topic><topic>Indomethacin - pharmacology</topic><topic>Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</topic><topic>Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Methacholine Chloride - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Nitric Oxide Synthase - antagonists & inhibitors</topic><topic>Organ Physiology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Receptors</topic><topic>Renal Insufficiency - etiology</topic><topic>Renal Insufficiency - metabolism</topic><topic>Renal Insufficiency - physiopathology</topic><topic>Renin - genetics</topic><topic>Renin - metabolism</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Sodium, Dietary - adverse effects</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waeckel, Ludovic</creatorcontrib><creatorcontrib>Bertin, Florence</creatorcontrib><creatorcontrib>Clavreul, Nicolas</creatorcontrib><creatorcontrib>Damery, Thibaut</creatorcontrib><creatorcontrib>Köhler, Ralf</creatorcontrib><creatorcontrib>Paysant, Jérôme</creatorcontrib><creatorcontrib>Sansilvestri-Morel, Patricia</creatorcontrib><creatorcontrib>Simonet, Serge</creatorcontrib><creatorcontrib>Vayssettes-Courchay, Christine</creatorcontrib><creatorcontrib>Wulff, Heike</creatorcontrib><creatorcontrib>Verbeuren, Tony J.</creatorcontrib><creatorcontrib>Félétou, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waeckel, Ludovic</au><au>Bertin, Florence</au><au>Clavreul, Nicolas</au><au>Damery, Thibaut</au><au>Köhler, Ralf</au><au>Paysant, Jérôme</au><au>Sansilvestri-Morel, Patricia</au><au>Simonet, Serge</au><au>Vayssettes-Courchay, Christine</au><au>Wulff, Heike</au><au>Verbeuren, Tony J.</au><au>Félétou, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>467</volume><issue>4</issue><spage>817</spage><epage>831</epage><pages>817-831</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, K
Ca
channels contribute to its regulation. Wild-type (BL) and double-transgenic female mice expressing human angiotensinogen and renin (AR) genes received either control or a high-salt diet associated to a nitric oxide (NO) synthase inhibitor treatment (BLSL and ARSL). Changes in renal perfusion pressure (RPP) were measured in isolated perfused kidneys. BLSL and AR were moderately hypertensive without kidney disease while ARSL developed severe hypertension and renal failure. In the four groups, methacholine induced biphasic endothelium-dependent responses, a transient decrease in RPP followed by a cyclooxygenase-dependent increase in RPP. In the presence or not of indomethacin, the vasodilatations were poorly sensitive to NO synthase inhibition. However, in the presence of cyclooxygenase and NO synthase inhibitors, apamin, and/or TRAM-34, blockers of K
Ca
2.3 and K
Ca
3.1, respectively, abolished the decrease in RPP in response to either methacholine or the two activators of K
Ca
2.3/K
Ca
3.1, NS309, and SKA-31. Thus, K
Ca
2/3 channels play a major role in the regulation of murine kidney perfusion and this mechanism is maintained in hypertension, even when severe and associated with kidney damage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24903240</pmid><doi>10.1007/s00424-014-1542-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2015-04, Vol.467 (4), p.817-831 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00424_014_1542_y |
source | Springer Nature |
subjects | Angiotensinogen - genetics Angiotensinogen - metabolism Animals Biomedical and Life Sciences Biomedicine Cell Biology Endothelium, Vascular - drug effects Endothelium, Vascular - metabolism Endothelium, Vascular - physiology Female Human Physiology Humans Hypertension, Renovascular - etiology Hypertension, Renovascular - metabolism Hypertension, Renovascular - physiopathology Indomethacin - pharmacology Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism Methacholine Chloride - pharmacology Mice Mice, Inbred C57BL Molecular Medicine Neurosciences Nitric Oxide Synthase - antagonists & inhibitors Organ Physiology Potassium Channel Blockers - pharmacology Receptors Renal Insufficiency - etiology Renal Insufficiency - metabolism Renal Insufficiency - physiopathology Renin - genetics Renin - metabolism Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors Small-Conductance Calcium-Activated Potassium Channels - metabolism Sodium, Dietary - adverse effects Vasodilation |
title | Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preserved%20regulation%20of%20renal%20perfusion%20pressure%20by%20small%20and%20intermediate%20conductance%20KCa%20channels%20in%20hypertensive%20mice%20with%20or%20without%20renal%20failure&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Waeckel,%20Ludovic&rft.date=2015-04-01&rft.volume=467&rft.issue=4&rft.spage=817&rft.epage=831&rft.pages=817-831&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-014-1542-y&rft_dat=%3Cpubmed_cross%3E24903240%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329y-3490303c372c8b4e47891ebb894cef6f6d3a3d8658d781a65b77e61f67c2be7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24903240&rfr_iscdi=true |