Loading…
A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits
We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this me...
Saved in:
Published in: | Probability theory and related fields 2024-06, Vol.189 (1-2), p.447-499 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3 |
container_end_page | 499 |
container_issue | 1-2 |
container_start_page | 447 |
container_title | Probability theory and related fields |
container_volume | 189 |
creator | Deuschel, Jean-Dominique Rodriguez, Pierre-François |
description | We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is
not
Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on
$$\mathbb R^3$$
R
3
with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself. |
doi_str_mv | 10.1007/s00440-024-01275-3 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00440_024_01275_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00440_024_01275_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</originalsourceid><addsrcrecordid>eNot0M1KAzEUBeAgCo7VF3CVRbfRm5vMTGZZilqxUJAuCyGTZDqR-SnJbLrzHXxDn8RqXR0OHM7iI-SewwMHKB8TgJTAACUDjmXOxAXJuBTIEAp5STLgpWIKcn5NblL6AAAUEjOyWdB3c_z-_Hobwr6d6NT6MfqeNmOk8_luMHVn6O7QhlOjYZh8bIz1tB-d7xI1g6PJmi4Me9qFPkzpllw1pkv-7j9nZPv8tF2u2Hrz8rpcrJlVpWCFKepSCAcOvVPGWFfkzsscpVeqQqe8NLbgvGgqFI2wp7WVuZVlnbsK0YkZwfOtjWNK0Tf6EENv4lFz0L8i-iyiTyL6T0QL8QO3DlPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><source>Springer Nature</source><creator>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</creator><creatorcontrib>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</creatorcontrib><description>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is
not
Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on
$$\mathbb R^3$$
R
3
with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-024-01275-3</identifier><language>eng</language><ispartof>Probability theory and related fields, 2024-06, Vol.189 (1-2), p.447-499</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</cites><orcidid>0000-0001-7607-0724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><title>Probability theory and related fields</title><description>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is
not
Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on
$$\mathbb R^3$$
R
3
with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</description><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0M1KAzEUBeAgCo7VF3CVRbfRm5vMTGZZilqxUJAuCyGTZDqR-SnJbLrzHXxDn8RqXR0OHM7iI-SewwMHKB8TgJTAACUDjmXOxAXJuBTIEAp5STLgpWIKcn5NblL6AAAUEjOyWdB3c_z-_Hobwr6d6NT6MfqeNmOk8_luMHVn6O7QhlOjYZh8bIz1tB-d7xI1g6PJmi4Me9qFPkzpllw1pkv-7j9nZPv8tF2u2Hrz8rpcrJlVpWCFKepSCAcOvVPGWFfkzsscpVeqQqe8NLbgvGgqFI2wp7WVuZVlnbsK0YkZwfOtjWNK0Tf6EENv4lFz0L8i-iyiTyL6T0QL8QO3DlPs</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Deuschel, Jean-Dominique</creator><creator>Rodriguez, Pierre-François</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7607-0724</orcidid></search><sort><creationdate>202406</creationdate><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><author>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><collection>CrossRef</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuschel, Jean-Dominique</au><au>Rodriguez, Pierre-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</atitle><jtitle>Probability theory and related fields</jtitle><date>2024-06</date><risdate>2024</risdate><volume>189</volume><issue>1-2</issue><spage>447</spage><epage>499</epage><pages>447-499</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is
not
Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on
$$\mathbb R^3$$
R
3
with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</abstract><doi>10.1007/s00440-024-01275-3</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-7607-0724</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2024-06, Vol.189 (1-2), p.447-499 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00440_024_01275_3 |
source | Springer Nature |
title | A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ray%E2%80%93Knight%20theorem%20for%20$$%5Cnabla%20%5Cphi%20$$%20interface%20models%20and%20scaling%20limits&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Deuschel,%20Jean-Dominique&rft.date=2024-06&rft.volume=189&rft.issue=1-2&rft.spage=447&rft.epage=499&rft.pages=447-499&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-024-01275-3&rft_dat=%3Ccrossref%3E10_1007_s00440_024_01275_3%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |