Loading…

A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits

We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this me...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2024-06, Vol.189 (1-2), p.447-499
Main Authors: Deuschel, Jean-Dominique, Rodriguez, Pierre-François
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3
container_end_page 499
container_issue 1-2
container_start_page 447
container_title Probability theory and related fields
container_volume 189
creator Deuschel, Jean-Dominique
Rodriguez, Pierre-François
description We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is not Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on $$\mathbb R^3$$ R 3 with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.
doi_str_mv 10.1007/s00440-024-01275-3
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00440_024_01275_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00440_024_01275_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</originalsourceid><addsrcrecordid>eNot0M1KAzEUBeAgCo7VF3CVRbfRm5vMTGZZilqxUJAuCyGTZDqR-SnJbLrzHXxDn8RqXR0OHM7iI-SewwMHKB8TgJTAACUDjmXOxAXJuBTIEAp5STLgpWIKcn5NblL6AAAUEjOyWdB3c_z-_Hobwr6d6NT6MfqeNmOk8_luMHVn6O7QhlOjYZh8bIz1tB-d7xI1g6PJmi4Me9qFPkzpllw1pkv-7j9nZPv8tF2u2Hrz8rpcrJlVpWCFKepSCAcOvVPGWFfkzsscpVeqQqe8NLbgvGgqFI2wp7WVuZVlnbsK0YkZwfOtjWNK0Tf6EENv4lFz0L8i-iyiTyL6T0QL8QO3DlPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><source>Springer Nature</source><creator>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</creator><creatorcontrib>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</creatorcontrib><description>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is not Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on $$\mathbb R^3$$ R 3 with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-024-01275-3</identifier><language>eng</language><ispartof>Probability theory and related fields, 2024-06, Vol.189 (1-2), p.447-499</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</cites><orcidid>0000-0001-7607-0724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><title>Probability theory and related fields</title><description>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is not Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on $$\mathbb R^3$$ R 3 with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</description><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0M1KAzEUBeAgCo7VF3CVRbfRm5vMTGZZilqxUJAuCyGTZDqR-SnJbLrzHXxDn8RqXR0OHM7iI-SewwMHKB8TgJTAACUDjmXOxAXJuBTIEAp5STLgpWIKcn5NblL6AAAUEjOyWdB3c_z-_Hobwr6d6NT6MfqeNmOk8_luMHVn6O7QhlOjYZh8bIz1tB-d7xI1g6PJmi4Me9qFPkzpllw1pkv-7j9nZPv8tF2u2Hrz8rpcrJlVpWCFKepSCAcOvVPGWFfkzsscpVeqQqe8NLbgvGgqFI2wp7WVuZVlnbsK0YkZwfOtjWNK0Tf6EENv4lFz0L8i-iyiTyL6T0QL8QO3DlPs</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Deuschel, Jean-Dominique</creator><creator>Rodriguez, Pierre-François</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7607-0724</orcidid></search><sort><creationdate>202406</creationdate><title>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</title><author>Deuschel, Jean-Dominique ; Rodriguez, Pierre-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><collection>CrossRef</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuschel, Jean-Dominique</au><au>Rodriguez, Pierre-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits</atitle><jtitle>Probability theory and related fields</jtitle><date>2024-06</date><risdate>2024</risdate><volume>189</volume><issue>1-2</issue><spage>447</spage><epage>499</epage><pages>447-499</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is not Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on $$\mathbb R^3$$ R 3 with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.</abstract><doi>10.1007/s00440-024-01275-3</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-7607-0724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2024-06, Vol.189 (1-2), p.447-499
issn 0178-8051
1432-2064
language eng
recordid cdi_crossref_primary_10_1007_s00440_024_01275_3
source Springer Nature
title A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ray%E2%80%93Knight%20theorem%20for%20$$%5Cnabla%20%5Cphi%20$$%20interface%20models%20and%20scaling%20limits&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Deuschel,%20Jean-Dominique&rft.date=2024-06&rft.volume=189&rft.issue=1-2&rft.spage=447&rft.epage=499&rft.pages=447-499&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-024-01275-3&rft_dat=%3Ccrossref%3E10_1007_s00440_024_01275_3%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c873-6a6b733d0d2ed8aacd65de4524e8892d8e4ac6116f923f3c6b7c45c47b5d922d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true