Loading…

Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins

A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal wo...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica 2018-12, Vol.80 (12), p.3673-3703
Main Authors: Berenbrink, Petra, Friedetzky, Tom, Kling, Peter, Mallmann-Trenn, Frederik, Nagel, Lars, Wastell, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053
container_end_page 3703
container_issue 12
container_start_page 3673
container_title Algorithmica
container_volume 80
creator Berenbrink, Petra
Friedetzky, Tom
Kling, Peter
Mallmann-Trenn, Frederik
Nagel, Lars
Wastell, Chris
description A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200, 1999 . https://doi.org/10.1137/S0097539795288490 ) proposed the sequential strategy G R E E D Y [ d ] for n = m . Each ball queries the load of d random bins and is allocated to a least loaded of them. Azar et al. ( 1999 ) showed that d = 2 yields an exponential improvement compared to d = 1 . Berenbrink et al. (SIAM J Comput 35(6):1350–1385, 2006 . https://doi.org/10.1137/S009753970444435X ) extended this to m ≫ n , showing that for d = 2 the maximal load difference is independent of m (in contrast to the d = 1 case). We propose a new variant of an infinite balls-into-bins process. In each round an expected number of λ n new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the G R E E D Y [ d ] distribution scheme in this setting and show a strong self-stabilizing property: for any arrival rate λ = λ ( n ) < 1 , the system load is time-invariant. Moreover, for any (even super-exponential) round t , the maximum system load is (w.h.p.) for d = 1 and for d = 2 . In particular, G R E E D Y [ 2 ] has an exponentially smaller system load for high arrival rates.
doi_str_mv 10.1007/s00453-018-0411-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00453_018_0411_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00453_018_0411_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoOI7-AHddC9H3krRJls7gFwy4GF2HNE3HDDUjSV3YX2-Gunb14HLP5R1CrhFuEUDeZQBRcwqoKAhEOp2QBQrOKNQCT8kCUCoqGpTn5CLnPQAyqZsFudn6oafb0bZhCFOIu2plhyFXNnbVKsRchViS0X34fEnOejtkf_V3l-T98eFt_Uw3r08v6_sNdUzASJXoe6GhbbQCp1B1DXOt1l45zQXvwFvX1MKCFigbqTpWe8kElgbHMlDzJcF516VDzsn35iuFT5t-DII5yppZ1hRZc5Q1U2HYzOTSjTufzP7wnWJ58x_oF_tyVQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</title><source>Springer Link</source><creator>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</creator><creatorcontrib>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</creatorcontrib><description>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200, 1999 . https://doi.org/10.1137/S0097539795288490 ) proposed the sequential strategy G R E E D Y [ d ] for n = m . Each ball queries the load of d random bins and is allocated to a least loaded of them. Azar et al. ( 1999 ) showed that d = 2 yields an exponential improvement compared to d = 1 . Berenbrink et al. (SIAM J Comput 35(6):1350–1385, 2006 . https://doi.org/10.1137/S009753970444435X ) extended this to m ≫ n , showing that for d = 2 the maximal load difference is independent of m (in contrast to the d = 1 case). We propose a new variant of an infinite balls-into-bins process. In each round an expected number of λ n new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the G R E E D Y [ d ] distribution scheme in this setting and show a strong self-stabilizing property: for any arrival rate λ = λ ( n ) &lt; 1 , the system load is time-invariant. Moreover, for any (even super-exponential) round t , the maximum system load is (w.h.p.) for d = 1 and for d = 2 . In particular, G R E E D Y [ 2 ] has an exponentially smaller system load for high arrival rates.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-018-0411-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Mathematics of Computing ; Theory of Computation</subject><ispartof>Algorithmica, 2018-12, Vol.80 (12), p.3673-3703</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Berenbrink, Petra</creatorcontrib><creatorcontrib>Friedetzky, Tom</creatorcontrib><creatorcontrib>Kling, Peter</creatorcontrib><creatorcontrib>Mallmann-Trenn, Frederik</creatorcontrib><creatorcontrib>Nagel, Lars</creatorcontrib><creatorcontrib>Wastell, Chris</creatorcontrib><title>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200, 1999 . https://doi.org/10.1137/S0097539795288490 ) proposed the sequential strategy G R E E D Y [ d ] for n = m . Each ball queries the load of d random bins and is allocated to a least loaded of them. Azar et al. ( 1999 ) showed that d = 2 yields an exponential improvement compared to d = 1 . Berenbrink et al. (SIAM J Comput 35(6):1350–1385, 2006 . https://doi.org/10.1137/S009753970444435X ) extended this to m ≫ n , showing that for d = 2 the maximal load difference is independent of m (in contrast to the d = 1 case). We propose a new variant of an infinite balls-into-bins process. In each round an expected number of λ n new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the G R E E D Y [ d ] distribution scheme in this setting and show a strong self-stabilizing property: for any arrival rate λ = λ ( n ) &lt; 1 , the system load is time-invariant. Moreover, for any (even super-exponential) round t , the maximum system load is (w.h.p.) for d = 1 and for d = 2 . In particular, G R E E D Y [ 2 ] has an exponentially smaller system load for high arrival rates.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Mathematics of Computing</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoOI7-AHddC9H3krRJls7gFwy4GF2HNE3HDDUjSV3YX2-Gunb14HLP5R1CrhFuEUDeZQBRcwqoKAhEOp2QBQrOKNQCT8kCUCoqGpTn5CLnPQAyqZsFudn6oafb0bZhCFOIu2plhyFXNnbVKsRchViS0X34fEnOejtkf_V3l-T98eFt_Uw3r08v6_sNdUzASJXoe6GhbbQCp1B1DXOt1l45zQXvwFvX1MKCFigbqTpWe8kElgbHMlDzJcF516VDzsn35iuFT5t-DII5yppZ1hRZc5Q1U2HYzOTSjTufzP7wnWJ58x_oF_tyVQY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Berenbrink, Petra</creator><creator>Friedetzky, Tom</creator><creator>Kling, Peter</creator><creator>Mallmann-Trenn, Frederik</creator><creator>Nagel, Lars</creator><creator>Wastell, Chris</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Self-Stabilizing Balls and Bins in Batches</title><author>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Mathematics of Computing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenbrink, Petra</creatorcontrib><creatorcontrib>Friedetzky, Tom</creatorcontrib><creatorcontrib>Kling, Peter</creatorcontrib><creatorcontrib>Mallmann-Trenn, Frederik</creatorcontrib><creatorcontrib>Nagel, Lars</creatorcontrib><creatorcontrib>Wastell, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenbrink, Petra</au><au>Friedetzky, Tom</au><au>Kling, Peter</au><au>Mallmann-Trenn, Frederik</au><au>Nagel, Lars</au><au>Wastell, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>80</volume><issue>12</issue><spage>3673</spage><epage>3703</epage><pages>3673-3703</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200, 1999 . https://doi.org/10.1137/S0097539795288490 ) proposed the sequential strategy G R E E D Y [ d ] for n = m . Each ball queries the load of d random bins and is allocated to a least loaded of them. Azar et al. ( 1999 ) showed that d = 2 yields an exponential improvement compared to d = 1 . Berenbrink et al. (SIAM J Comput 35(6):1350–1385, 2006 . https://doi.org/10.1137/S009753970444435X ) extended this to m ≫ n , showing that for d = 2 the maximal load difference is independent of m (in contrast to the d = 1 case). We propose a new variant of an infinite balls-into-bins process. In each round an expected number of λ n new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the G R E E D Y [ d ] distribution scheme in this setting and show a strong self-stabilizing property: for any arrival rate λ = λ ( n ) &lt; 1 , the system load is time-invariant. Moreover, for any (even super-exponential) round t , the maximum system load is (w.h.p.) for d = 1 and for d = 2 . In particular, G R E E D Y [ 2 ] has an exponentially smaller system load for high arrival rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-018-0411-z</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2018-12, Vol.80 (12), p.3673-3703
issn 0178-4617
1432-0541
language eng
recordid cdi_crossref_primary_10_1007_s00453_018_0411_z
source Springer Link
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Theory of Computation
title Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Stabilizing%20Balls%20and%20Bins%20in%20Batches:%20The%20Power%20of%20Leaky%20Bins&rft.jtitle=Algorithmica&rft.au=Berenbrink,%20Petra&rft.date=2018-12-01&rft.volume=80&rft.issue=12&rft.spage=3673&rft.epage=3703&rft.pages=3673-3703&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-018-0411-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s00453_018_0411_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true