Loading…
Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins
A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal wo...
Saved in:
Published in: | Algorithmica 2018-12, Vol.80 (12), p.3673-3703 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053 |
container_end_page | 3703 |
container_issue | 12 |
container_start_page | 3673 |
container_title | Algorithmica |
container_volume | 80 |
creator | Berenbrink, Petra Friedetzky, Tom Kling, Peter Mallmann-Trenn, Frederik Nagel, Lars Wastell, Chris |
description | A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where
m
balls (tasks) are to be distributed among
n
bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200,
1999
.
https://doi.org/10.1137/S0097539795288490
) proposed the sequential strategy
G
R
E
E
D
Y
[
d
]
for
n
=
m
. Each ball queries the load of
d
random bins and is allocated to a least loaded of them. Azar et al. (
1999
) showed that
d
=
2
yields an exponential improvement compared to
d
=
1
. Berenbrink et al. (SIAM J Comput 35(6):1350–1385,
2006
.
https://doi.org/10.1137/S009753970444435X
) extended this to
m
≫
n
, showing that for
d
=
2
the maximal load difference is independent of
m
(in contrast to the
d
=
1
case). We propose a new variant of an
infinite
balls-into-bins process. In each round an expected number of
λ
n
new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the
G
R
E
E
D
Y
[
d
]
distribution scheme in this setting and show a strong self-stabilizing property: for
any
arrival rate
λ
=
λ
(
n
)
<
1
, the system load is time-invariant. Moreover, for
any
(even super-exponential) round
t
, the maximum system load is (w.h.p.)
for
d
=
1
and
for
d
=
2
. In particular,
G
R
E
E
D
Y
[
2
]
has an exponentially smaller system load for high arrival rates. |
doi_str_mv | 10.1007/s00453-018-0411-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00453_018_0411_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00453_018_0411_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoOI7-AHddC9H3krRJls7gFwy4GF2HNE3HDDUjSV3YX2-Gunb14HLP5R1CrhFuEUDeZQBRcwqoKAhEOp2QBQrOKNQCT8kCUCoqGpTn5CLnPQAyqZsFudn6oafb0bZhCFOIu2plhyFXNnbVKsRchViS0X34fEnOejtkf_V3l-T98eFt_Uw3r08v6_sNdUzASJXoe6GhbbQCp1B1DXOt1l45zQXvwFvX1MKCFigbqTpWe8kElgbHMlDzJcF516VDzsn35iuFT5t-DII5yppZ1hRZc5Q1U2HYzOTSjTufzP7wnWJ58x_oF_tyVQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</title><source>Springer Link</source><creator>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</creator><creatorcontrib>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</creatorcontrib><description>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where
m
balls (tasks) are to be distributed among
n
bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200,
1999
.
https://doi.org/10.1137/S0097539795288490
) proposed the sequential strategy
G
R
E
E
D
Y
[
d
]
for
n
=
m
. Each ball queries the load of
d
random bins and is allocated to a least loaded of them. Azar et al. (
1999
) showed that
d
=
2
yields an exponential improvement compared to
d
=
1
. Berenbrink et al. (SIAM J Comput 35(6):1350–1385,
2006
.
https://doi.org/10.1137/S009753970444435X
) extended this to
m
≫
n
, showing that for
d
=
2
the maximal load difference is independent of
m
(in contrast to the
d
=
1
case). We propose a new variant of an
infinite
balls-into-bins process. In each round an expected number of
λ
n
new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the
G
R
E
E
D
Y
[
d
]
distribution scheme in this setting and show a strong self-stabilizing property: for
any
arrival rate
λ
=
λ
(
n
)
<
1
, the system load is time-invariant. Moreover, for
any
(even super-exponential) round
t
, the maximum system load is (w.h.p.)
for
d
=
1
and
for
d
=
2
. In particular,
G
R
E
E
D
Y
[
2
]
has an exponentially smaller system load for high arrival rates.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-018-0411-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Mathematics of Computing ; Theory of Computation</subject><ispartof>Algorithmica, 2018-12, Vol.80 (12), p.3673-3703</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Berenbrink, Petra</creatorcontrib><creatorcontrib>Friedetzky, Tom</creatorcontrib><creatorcontrib>Kling, Peter</creatorcontrib><creatorcontrib>Mallmann-Trenn, Frederik</creatorcontrib><creatorcontrib>Nagel, Lars</creatorcontrib><creatorcontrib>Wastell, Chris</creatorcontrib><title>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where
m
balls (tasks) are to be distributed among
n
bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200,
1999
.
https://doi.org/10.1137/S0097539795288490
) proposed the sequential strategy
G
R
E
E
D
Y
[
d
]
for
n
=
m
. Each ball queries the load of
d
random bins and is allocated to a least loaded of them. Azar et al. (
1999
) showed that
d
=
2
yields an exponential improvement compared to
d
=
1
. Berenbrink et al. (SIAM J Comput 35(6):1350–1385,
2006
.
https://doi.org/10.1137/S009753970444435X
) extended this to
m
≫
n
, showing that for
d
=
2
the maximal load difference is independent of
m
(in contrast to the
d
=
1
case). We propose a new variant of an
infinite
balls-into-bins process. In each round an expected number of
λ
n
new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the
G
R
E
E
D
Y
[
d
]
distribution scheme in this setting and show a strong self-stabilizing property: for
any
arrival rate
λ
=
λ
(
n
)
<
1
, the system load is time-invariant. Moreover, for
any
(even super-exponential) round
t
, the maximum system load is (w.h.p.)
for
d
=
1
and
for
d
=
2
. In particular,
G
R
E
E
D
Y
[
2
]
has an exponentially smaller system load for high arrival rates.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Mathematics of Computing</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoOI7-AHddC9H3krRJls7gFwy4GF2HNE3HDDUjSV3YX2-Gunb14HLP5R1CrhFuEUDeZQBRcwqoKAhEOp2QBQrOKNQCT8kCUCoqGpTn5CLnPQAyqZsFudn6oafb0bZhCFOIu2plhyFXNnbVKsRchViS0X34fEnOejtkf_V3l-T98eFt_Uw3r08v6_sNdUzASJXoe6GhbbQCp1B1DXOt1l45zQXvwFvX1MKCFigbqTpWe8kElgbHMlDzJcF516VDzsn35iuFT5t-DII5yppZ1hRZc5Q1U2HYzOTSjTufzP7wnWJ58x_oF_tyVQY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Berenbrink, Petra</creator><creator>Friedetzky, Tom</creator><creator>Kling, Peter</creator><creator>Mallmann-Trenn, Frederik</creator><creator>Nagel, Lars</creator><creator>Wastell, Chris</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Self-Stabilizing Balls and Bins in Batches</title><author>Berenbrink, Petra ; Friedetzky, Tom ; Kling, Peter ; Mallmann-Trenn, Frederik ; Nagel, Lars ; Wastell, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Mathematics of Computing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenbrink, Petra</creatorcontrib><creatorcontrib>Friedetzky, Tom</creatorcontrib><creatorcontrib>Kling, Peter</creatorcontrib><creatorcontrib>Mallmann-Trenn, Frederik</creatorcontrib><creatorcontrib>Nagel, Lars</creatorcontrib><creatorcontrib>Wastell, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenbrink, Petra</au><au>Friedetzky, Tom</au><au>Kling, Peter</au><au>Mallmann-Trenn, Frederik</au><au>Nagel, Lars</au><au>Wastell, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>80</volume><issue>12</issue><spage>3673</spage><epage>3703</epage><pages>3673-3703</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where
m
balls (tasks) are to be distributed among
n
bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1):180–200,
1999
.
https://doi.org/10.1137/S0097539795288490
) proposed the sequential strategy
G
R
E
E
D
Y
[
d
]
for
n
=
m
. Each ball queries the load of
d
random bins and is allocated to a least loaded of them. Azar et al. (
1999
) showed that
d
=
2
yields an exponential improvement compared to
d
=
1
. Berenbrink et al. (SIAM J Comput 35(6):1350–1385,
2006
.
https://doi.org/10.1137/S009753970444435X
) extended this to
m
≫
n
, showing that for
d
=
2
the maximal load difference is independent of
m
(in contrast to the
d
=
1
case). We propose a new variant of an
infinite
balls-into-bins process. In each round an expected number of
λ
n
new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server’s current load but receive no information about parallel requests. We study the
G
R
E
E
D
Y
[
d
]
distribution scheme in this setting and show a strong self-stabilizing property: for
any
arrival rate
λ
=
λ
(
n
)
<
1
, the system load is time-invariant. Moreover, for
any
(even super-exponential) round
t
, the maximum system load is (w.h.p.)
for
d
=
1
and
for
d
=
2
. In particular,
G
R
E
E
D
Y
[
2
]
has an exponentially smaller system load for high arrival rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-018-0411-z</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2018-12, Vol.80 (12), p.3673-3703 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00453_018_0411_z |
source | Springer Link |
subjects | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematics of Computing Theory of Computation |
title | Self-Stabilizing Balls and Bins in Batches: The Power of Leaky Bins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Stabilizing%20Balls%20and%20Bins%20in%20Batches:%20The%20Power%20of%20Leaky%20Bins&rft.jtitle=Algorithmica&rft.au=Berenbrink,%20Petra&rft.date=2018-12-01&rft.volume=80&rft.issue=12&rft.spage=3673&rft.epage=3703&rft.pages=3673-3703&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-018-0411-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s00453_018_0411_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-84ff490b6980c818d62cb99e8c9343d0eac654a09417678d25e724199e3124053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |