Loading…

Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation

This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its unde...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2024-11
Main Authors: Nijenhuis, M., Meijaard, J. P., Naves, M., Aarts, R. G. K. M.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563
container_end_page
container_issue
container_start_page
container_title Computational mechanics
container_volume
creator Nijenhuis, M.
Meijaard, J. P.
Naves, M.
Aarts, R. G. K. M.
description This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.
doi_str_mv 10.1007/s00466-024-02570-5
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00466_024_02570_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00466_024_02570_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqVwAVa-gMGOM3ayRBV_UiU2ZR059rgxSuLKDkVwDS5MSlmwGM3oPc170kfIteA3gnN9mzkvlWK8KOcBzRmckIUoZcF4XZSnZMGFrphWGs7JRc5vnAuoJCzI96YLybGYHCa6xTjglIKleQrej5gz9TEN772ZQhwPNw3DLsU9Ojpg7qiN4x7TFkeLNHo6dWGkZnT0IzikeTe_mZ62aIZMZ2fqcO4YMZk-fM0ReUpmlg_-_55LcuZNn_Hqby_J68P9ZvXE1i-Pz6u7NbOiqCYmbCXRYo3S2Ra0kMoDiBKkqcFahVI5qJWpWlFyr2WpLCpRubaWoEGBkktSHHNtijkn9M0uhcGkz0bw5oC1OWJtZqzNL9YG5A-pt27I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><source>Springer Nature</source><creator>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</creator><creatorcontrib>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</creatorcontrib><description>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-024-02570-5</identifier><language>eng</language><ispartof>Computational mechanics, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nijenhuis, M.</creatorcontrib><creatorcontrib>Meijaard, J. P.</creatorcontrib><creatorcontrib>Naves, M.</creatorcontrib><creatorcontrib>Aarts, R. G. K. M.</creatorcontrib><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><title>Computational mechanics</title><description>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</description><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EEqVwAVa-gMGOM3ayRBV_UiU2ZR059rgxSuLKDkVwDS5MSlmwGM3oPc170kfIteA3gnN9mzkvlWK8KOcBzRmckIUoZcF4XZSnZMGFrphWGs7JRc5vnAuoJCzI96YLybGYHCa6xTjglIKleQrej5gz9TEN772ZQhwPNw3DLsU9Ojpg7qiN4x7TFkeLNHo6dWGkZnT0IzikeTe_mZ62aIZMZ2fqcO4YMZk-fM0ReUpmlg_-_55LcuZNn_Hqby_J68P9ZvXE1i-Pz6u7NbOiqCYmbCXRYo3S2Ra0kMoDiBKkqcFahVI5qJWpWlFyr2WpLCpRubaWoEGBkktSHHNtijkn9M0uhcGkz0bw5oC1OWJtZqzNL9YG5A-pt27I</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Nijenhuis, M.</creator><creator>Meijaard, J. P.</creator><creator>Naves, M.</creator><creator>Aarts, R. G. K. M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241111</creationdate><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><author>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nijenhuis, M.</creatorcontrib><creatorcontrib>Meijaard, J. P.</creatorcontrib><creatorcontrib>Naves, M.</creatorcontrib><creatorcontrib>Aarts, R. G. K. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nijenhuis, M.</au><au>Meijaard, J. P.</au><au>Naves, M.</au><au>Aarts, R. G. K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</atitle><jtitle>Computational mechanics</jtitle><date>2024-11-11</date><risdate>2024</risdate><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</abstract><doi>10.1007/s00466-024-02570-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2024-11
issn 0178-7675
1432-0924
language eng
recordid cdi_crossref_primary_10_1007_s00466_024_02570_5
source Springer Nature
title Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third-order%20geometric%20stiffness%20formulation%20for%20improved%20mesh%20convergence%20of%20thin%20and%20wide%20spatial%20beams%20in%20the%20generalized%20strain%20beam%20formulation&rft.jtitle=Computational%20mechanics&rft.au=Nijenhuis,%20M.&rft.date=2024-11-11&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-024-02570-5&rft_dat=%3Ccrossref%3E10_1007_s00466_024_02570_5%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true