Loading…
Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation
This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its unde...
Saved in:
Published in: | Computational mechanics 2024-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Computational mechanics |
container_volume | |
creator | Nijenhuis, M. Meijaard, J. P. Naves, M. Aarts, R. G. K. M. |
description | This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation. |
doi_str_mv | 10.1007/s00466-024-02570-5 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00466_024_02570_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00466_024_02570_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqVwAVa-gMGOM3ayRBV_UiU2ZR059rgxSuLKDkVwDS5MSlmwGM3oPc170kfIteA3gnN9mzkvlWK8KOcBzRmckIUoZcF4XZSnZMGFrphWGs7JRc5vnAuoJCzI96YLybGYHCa6xTjglIKleQrej5gz9TEN772ZQhwPNw3DLsU9Ojpg7qiN4x7TFkeLNHo6dWGkZnT0IzikeTe_mZ62aIZMZ2fqcO4YMZk-fM0ReUpmlg_-_55LcuZNn_Hqby_J68P9ZvXE1i-Pz6u7NbOiqCYmbCXRYo3S2Ra0kMoDiBKkqcFahVI5qJWpWlFyr2WpLCpRubaWoEGBkktSHHNtijkn9M0uhcGkz0bw5oC1OWJtZqzNL9YG5A-pt27I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><source>Springer Nature</source><creator>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</creator><creatorcontrib>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</creatorcontrib><description>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-024-02570-5</identifier><language>eng</language><ispartof>Computational mechanics, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nijenhuis, M.</creatorcontrib><creatorcontrib>Meijaard, J. P.</creatorcontrib><creatorcontrib>Naves, M.</creatorcontrib><creatorcontrib>Aarts, R. G. K. M.</creatorcontrib><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><title>Computational mechanics</title><description>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</description><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EEqVwAVa-gMGOM3ayRBV_UiU2ZR059rgxSuLKDkVwDS5MSlmwGM3oPc170kfIteA3gnN9mzkvlWK8KOcBzRmckIUoZcF4XZSnZMGFrphWGs7JRc5vnAuoJCzI96YLybGYHCa6xTjglIKleQrej5gz9TEN772ZQhwPNw3DLsU9Ojpg7qiN4x7TFkeLNHo6dWGkZnT0IzikeTe_mZ62aIZMZ2fqcO4YMZk-fM0ReUpmlg_-_55LcuZNn_Hqby_J68P9ZvXE1i-Pz6u7NbOiqCYmbCXRYo3S2Ra0kMoDiBKkqcFahVI5qJWpWlFyr2WpLCpRubaWoEGBkktSHHNtijkn9M0uhcGkz0bw5oC1OWJtZqzNL9YG5A-pt27I</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Nijenhuis, M.</creator><creator>Meijaard, J. P.</creator><creator>Naves, M.</creator><creator>Aarts, R. G. K. M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241111</creationdate><title>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</title><author>Nijenhuis, M. ; Meijaard, J. P. ; Naves, M. ; Aarts, R. G. K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nijenhuis, M.</creatorcontrib><creatorcontrib>Meijaard, J. P.</creatorcontrib><creatorcontrib>Naves, M.</creatorcontrib><creatorcontrib>Aarts, R. G. K. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nijenhuis, M.</au><au>Meijaard, J. P.</au><au>Naves, M.</au><au>Aarts, R. G. K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation</atitle><jtitle>Computational mechanics</jtitle><date>2024-11-11</date><risdate>2024</risdate><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper presents the stiffness formulation of a beam element with the relevant third-order nonlinear geometric effects for relatively wide and thin rectangular beams, in particular when loaded in the plane and simultaneously deformed out of the plane. The element is initially straight in its undeformed configuration. The formulation is based on Timoshenko beam theory with nonuniform torsion and Wagner effects. The derivation is carried out by means of the Hellinger–Reissner variational principle with custom interpolation functions. The element is incorporated into the generalized strain beam formulation for multibody systems. Numerical simulations of precision flexure mechanisms show that the use of a single third-order element per flexible member can already yield adequate performance, at a significant reduction of the necessary degrees of freedom and the computation time, compared with using multiple second-order elements in the generalized strain beam formulation.</abstract><doi>10.1007/s00466-024-02570-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2024-11 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00466_024_02570_5 |
source | Springer Nature |
title | Third-order geometric stiffness formulation for improved mesh convergence of thin and wide spatial beams in the generalized strain beam formulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third-order%20geometric%20stiffness%20formulation%20for%20improved%20mesh%20convergence%20of%20thin%20and%20wide%20spatial%20beams%20in%20the%20generalized%20strain%20beam%20formulation&rft.jtitle=Computational%20mechanics&rft.au=Nijenhuis,%20M.&rft.date=2024-11-11&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-024-02570-5&rft_dat=%3Ccrossref%3E10_1007_s00466_024_02570_5%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c128t-1c83ece9e3dcb57136f551453a95cc6e36d596a8b140f7346ce618db935756563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |