Loading…
RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic
A flexible manufacturing system (FMS) is the model used for the system produced in the manufacturing industry, and it consists of the number of interconnected workstation. Inflexible manufacturing system scheduling of jobs has become a serious problem, even for a short breakdown of the machine and f...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2021-09, Vol.25 (18), p.12059-12074 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3 |
container_end_page | 12074 |
container_issue | 18 |
container_start_page | 12059 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 25 |
creator | Kumar, Priyan Malarvizhi Babu, Gokulnath Chandra Selvaraj, Anandamurugan Raza, Mohsin Luhach, Ashish Kr Díaz, Vicente García |
description | A flexible manufacturing system (FMS) is the model used for the system produced in the manufacturing industry, and it consists of the number of interconnected workstation. Inflexible manufacturing system scheduling of jobs has become a serious problem, even for a short breakdown of the machine and for the unexpected arrival of the product. To overcome this problem, a flexible manufacturing system using fuzzy rules is proposed. In this proposed model, four input variables are considered: (1) machine allocated processing time; (2) priority of the machine; (3) priority of the due date; and (4) priority of the setup time. The priority based on the job is the fuzzy variable, which shows the status of the job, based on which the next job will be selected for the processing in the machine. In this model, the machine will be selected first, and then, the scheduling is done based on the multi-criteria scheduling system. The obtained results are compared with the existing system and from the results. The improved scheduling strategy provides better results for the scheduling problem. |
doi_str_mv | 10.1007/s00500-021-05765-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00500_021_05765_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00500_021_05765_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKf8gcybJmk630atczARRn0OaZpuGbUdSfOw_Xq7zWfhwr0HzrkcPoSeKcwogHwJAAKAQEIJCJkKIm_QhHLGiORyfnu5EyJTzu7RQwh7GJ1SsAmKm6LcLPKyeMOLTbnK18Ur_ozt4IjxbrDeaVLpYGusDwffa7PDTe_xvq9wMDtbx9Z1W-y6ceoYBn_EfAZnHX60H7Bxg7MBx3B2NfF0OuK23zrziO4a3Qb79Len6Pu9KPMPsv5arvLFmhjKUkmk5BkImwkqeMoAQLNkriGrktryum40Y8BTU6WZyKgAqmWVyXklbU2ZpWnDpii5_jW-D8HbRh28G5sdFQV1Bqeu4NSIQ13AKTmG2DUURnO3tV7t--i7sed_qV_QDG9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic</title><source>Springer Nature</source><creator>Kumar, Priyan Malarvizhi ; Babu, Gokulnath Chandra ; Selvaraj, Anandamurugan ; Raza, Mohsin ; Luhach, Ashish Kr ; Díaz, Vicente García</creator><creatorcontrib>Kumar, Priyan Malarvizhi ; Babu, Gokulnath Chandra ; Selvaraj, Anandamurugan ; Raza, Mohsin ; Luhach, Ashish Kr ; Díaz, Vicente García</creatorcontrib><description>A flexible manufacturing system (FMS) is the model used for the system produced in the manufacturing industry, and it consists of the number of interconnected workstation. Inflexible manufacturing system scheduling of jobs has become a serious problem, even for a short breakdown of the machine and for the unexpected arrival of the product. To overcome this problem, a flexible manufacturing system using fuzzy rules is proposed. In this proposed model, four input variables are considered: (1) machine allocated processing time; (2) priority of the machine; (3) priority of the due date; and (4) priority of the setup time. The priority based on the job is the fuzzy variable, which shows the status of the job, based on which the next job will be selected for the processing in the machine. In this model, the machine will be selected first, and then, the scheduling is done based on the multi-criteria scheduling system. The obtained results are compared with the existing system and from the results. The improved scheduling strategy provides better results for the scheduling problem.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-05765-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Focus ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021-09, Vol.25 (18), p.12059-12074</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3</citedby><cites>FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><creatorcontrib>Babu, Gokulnath Chandra</creatorcontrib><creatorcontrib>Selvaraj, Anandamurugan</creatorcontrib><creatorcontrib>Raza, Mohsin</creatorcontrib><creatorcontrib>Luhach, Ashish Kr</creatorcontrib><creatorcontrib>Díaz, Vicente García</creatorcontrib><title>RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>A flexible manufacturing system (FMS) is the model used for the system produced in the manufacturing industry, and it consists of the number of interconnected workstation. Inflexible manufacturing system scheduling of jobs has become a serious problem, even for a short breakdown of the machine and for the unexpected arrival of the product. To overcome this problem, a flexible manufacturing system using fuzzy rules is proposed. In this proposed model, four input variables are considered: (1) machine allocated processing time; (2) priority of the machine; (3) priority of the due date; and (4) priority of the setup time. The priority based on the job is the fuzzy variable, which shows the status of the job, based on which the next job will be selected for the processing in the machine. In this model, the machine will be selected first, and then, the scheduling is done based on the multi-criteria scheduling system. The obtained results are compared with the existing system and from the results. The improved scheduling strategy provides better results for the scheduling problem.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Focus</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKf8gcybJmk630atczARRn0OaZpuGbUdSfOw_Xq7zWfhwr0HzrkcPoSeKcwogHwJAAKAQEIJCJkKIm_QhHLGiORyfnu5EyJTzu7RQwh7GJ1SsAmKm6LcLPKyeMOLTbnK18Ur_ozt4IjxbrDeaVLpYGusDwffa7PDTe_xvq9wMDtbx9Z1W-y6ceoYBn_EfAZnHX60H7Bxg7MBx3B2NfF0OuK23zrziO4a3Qb79Len6Pu9KPMPsv5arvLFmhjKUkmk5BkImwkqeMoAQLNkriGrktryum40Y8BTU6WZyKgAqmWVyXklbU2ZpWnDpii5_jW-D8HbRh28G5sdFQV1Bqeu4NSIQ13AKTmG2DUURnO3tV7t--i7sed_qV_QDG9p</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Kumar, Priyan Malarvizhi</creator><creator>Babu, Gokulnath Chandra</creator><creator>Selvaraj, Anandamurugan</creator><creator>Raza, Mohsin</creator><creator>Luhach, Ashish Kr</creator><creator>Díaz, Vicente García</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic</title><author>Kumar, Priyan Malarvizhi ; Babu, Gokulnath Chandra ; Selvaraj, Anandamurugan ; Raza, Mohsin ; Luhach, Ashish Kr ; Díaz, Vicente García</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Focus</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><creatorcontrib>Babu, Gokulnath Chandra</creatorcontrib><creatorcontrib>Selvaraj, Anandamurugan</creatorcontrib><creatorcontrib>Raza, Mohsin</creatorcontrib><creatorcontrib>Luhach, Ashish Kr</creatorcontrib><creatorcontrib>Díaz, Vicente García</creatorcontrib><collection>CrossRef</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Priyan Malarvizhi</au><au>Babu, Gokulnath Chandra</au><au>Selvaraj, Anandamurugan</au><au>Raza, Mohsin</au><au>Luhach, Ashish Kr</au><au>Díaz, Vicente García</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2021-09</date><risdate>2021</risdate><volume>25</volume><issue>18</issue><spage>12059</spage><epage>12074</epage><pages>12059-12074</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>A flexible manufacturing system (FMS) is the model used for the system produced in the manufacturing industry, and it consists of the number of interconnected workstation. Inflexible manufacturing system scheduling of jobs has become a serious problem, even for a short breakdown of the machine and for the unexpected arrival of the product. To overcome this problem, a flexible manufacturing system using fuzzy rules is proposed. In this proposed model, four input variables are considered: (1) machine allocated processing time; (2) priority of the machine; (3) priority of the due date; and (4) priority of the setup time. The priority based on the job is the fuzzy variable, which shows the status of the job, based on which the next job will be selected for the processing in the machine. In this model, the machine will be selected first, and then, the scheduling is done based on the multi-criteria scheduling system. The obtained results are compared with the existing system and from the results. The improved scheduling strategy provides better results for the scheduling problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-021-05765-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2021-09, Vol.25 (18), p.12059-12074 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00500_021_05765_7 |
source | Springer Nature |
subjects | Artificial Intelligence Computational Intelligence Control Engineering Focus Mathematical Logic and Foundations Mechatronics Robotics |
title | RETRACTED ARTICLE: Multi-criteria-based approach for job scheduling in industry 4.0 in smart cities using fuzzy logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Multi-criteria-based%20approach%20for%20job%20scheduling%20in%20industry%204.0%20in%20smart%20cities%20using%20fuzzy%20logic&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Kumar,%20Priyan%20Malarvizhi&rft.date=2021-09&rft.volume=25&rft.issue=18&rft.spage=12059&rft.epage=12074&rft.pages=12059-12074&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-05765-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s00500_021_05765_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1367-774805e8515463000a329a08b2de4ddfa33046cb68581501a7b879b7ed13e16f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |