Loading…

Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system

Brushless direct current (BLDC) motor is widely used in many applications for its high reliability and simplicity. The motor fault-tolerant control is important for its continuous operation even under the fault condition. The fault diagnosis should be achieved to implement the fault-tolerant control...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2021-10, Vol.25 (20), p.12759-12774
Main Authors: Gayatri Sarman, K. V. S. H., Madhu, T., Mallikharjuna Prasad, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073
cites cdi_FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073
container_end_page 12774
container_issue 20
container_start_page 12759
container_title Soft computing (Berlin, Germany)
container_volume 25
creator Gayatri Sarman, K. V. S. H.
Madhu, T.
Mallikharjuna Prasad, A.
description Brushless direct current (BLDC) motor is widely used in many applications for its high reliability and simplicity. The motor fault-tolerant control is important for its continuous operation even under the fault condition. The fault diagnosis should be achieved to implement the fault-tolerant control method. In our proposed work, short-circuit (SC) and open-circuit (OC) faults are detected in brushless direct current (BLDC) motor by using advanced adaptive network-based fuzzy inference system (AANFIS). AANFIS is a combination of social ski driver (SSD) and advanced adaptive network-based fuzzy inference system (ANFIS) for optimal feature selection and training process. There is no need to give entire data to the first (training) layer of ANFIS which reduces operational complexity, rapid learning capacity without expert knowledge as well as less training period and also SSD is used for the reduction of time complexity and fast convergence; thus, the reason for combining the ANFIS with SSD named as AANFIS is used for better output. Initially, BLDC drive speed is measured by signal speed oscillation. Discrete wavelet transform is used to extract the residual signal from BLDC. The amplitude and frequency of residual signal denote the open-circuit and short-circuit faults. Optimal feature selection will be performed by SSD in training stage of ANFIS. Fault diagnosis is performed through the layer of ANFIS structure and detected results are the outcomes of ANFIS. The proposed work will be implemented in Matlab/Simulink working platform. Resultant parameters like BLDC drive voltage and current analysis, fault diagnosis of BLDC drive with OC and SC, motor speed, torque and detection accuracy are evaluated. The power loss and accuracy are compared with ANN existing technique. The power loss of the existing ANN is 5.8% and the proposed method of AANFIS is 3% and the accuracy of the existing ANN is 97% and proposed method of AANFIS is 98.5%. The proposed method achieves better performance than the existing technique.
doi_str_mv 10.1007/s00500-021-06046-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00500_021_06046_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00500_021_06046_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HdvJEQoFpEpc4MLFcmK7Smmdyk6Kmq_HbTlz2tHozWp3ELqlcEcB1H0CEAAEGCUgoZBkPEMTWnBOVKGq86NmRMmCX6KrlFaQSSX4BH3NzbDusW3NMnSpTbjz-HHxNMM2tjuHh9SGJTZ2Z0LjbBZm2x_84PqfLn6T2qRs-2Ec97gN3kWXOZz2qXeba3ThzTq5m785RZ_z54_ZK1m8v7zNHhakYRXtibGsqgvqpKQCHGPGS9p4r4SUohK1LZWtWVUprkRRmZLzWpTgBC-VccyA4lPETnub2KUUndfb2G5M3GsK-tCOPrWj88_62I4ec4ifQinDYemiXnVDDPnO_1K_grBo3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system</title><source>Springer Link</source><creator>Gayatri Sarman, K. V. S. H. ; Madhu, T. ; Mallikharjuna Prasad, A.</creator><creatorcontrib>Gayatri Sarman, K. V. S. H. ; Madhu, T. ; Mallikharjuna Prasad, A.</creatorcontrib><description>Brushless direct current (BLDC) motor is widely used in many applications for its high reliability and simplicity. The motor fault-tolerant control is important for its continuous operation even under the fault condition. The fault diagnosis should be achieved to implement the fault-tolerant control method. In our proposed work, short-circuit (SC) and open-circuit (OC) faults are detected in brushless direct current (BLDC) motor by using advanced adaptive network-based fuzzy inference system (AANFIS). AANFIS is a combination of social ski driver (SSD) and advanced adaptive network-based fuzzy inference system (ANFIS) for optimal feature selection and training process. There is no need to give entire data to the first (training) layer of ANFIS which reduces operational complexity, rapid learning capacity without expert knowledge as well as less training period and also SSD is used for the reduction of time complexity and fast convergence; thus, the reason for combining the ANFIS with SSD named as AANFIS is used for better output. Initially, BLDC drive speed is measured by signal speed oscillation. Discrete wavelet transform is used to extract the residual signal from BLDC. The amplitude and frequency of residual signal denote the open-circuit and short-circuit faults. Optimal feature selection will be performed by SSD in training stage of ANFIS. Fault diagnosis is performed through the layer of ANFIS structure and detected results are the outcomes of ANFIS. The proposed work will be implemented in Matlab/Simulink working platform. Resultant parameters like BLDC drive voltage and current analysis, fault diagnosis of BLDC drive with OC and SC, motor speed, torque and detection accuracy are evaluated. The power loss and accuracy are compared with ANN existing technique. The power loss of the existing ANN is 5.8% and the proposed method of AANFIS is 3% and the accuracy of the existing ANN is 97% and proposed method of AANFIS is 98.5%. The proposed method achieves better performance than the existing technique.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-06046-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic ; Analytical Methods in Soft Computing ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Foundation ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021-10, Vol.25 (20), p.12759-12774</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073</citedby><cites>FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gayatri Sarman, K. V. S. H.</creatorcontrib><creatorcontrib>Madhu, T.</creatorcontrib><creatorcontrib>Mallikharjuna Prasad, A.</creatorcontrib><title>Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Brushless direct current (BLDC) motor is widely used in many applications for its high reliability and simplicity. The motor fault-tolerant control is important for its continuous operation even under the fault condition. The fault diagnosis should be achieved to implement the fault-tolerant control method. In our proposed work, short-circuit (SC) and open-circuit (OC) faults are detected in brushless direct current (BLDC) motor by using advanced adaptive network-based fuzzy inference system (AANFIS). AANFIS is a combination of social ski driver (SSD) and advanced adaptive network-based fuzzy inference system (ANFIS) for optimal feature selection and training process. There is no need to give entire data to the first (training) layer of ANFIS which reduces operational complexity, rapid learning capacity without expert knowledge as well as less training period and also SSD is used for the reduction of time complexity and fast convergence; thus, the reason for combining the ANFIS with SSD named as AANFIS is used for better output. Initially, BLDC drive speed is measured by signal speed oscillation. Discrete wavelet transform is used to extract the residual signal from BLDC. The amplitude and frequency of residual signal denote the open-circuit and short-circuit faults. Optimal feature selection will be performed by SSD in training stage of ANFIS. Fault diagnosis is performed through the layer of ANFIS structure and detected results are the outcomes of ANFIS. The proposed work will be implemented in Matlab/Simulink working platform. Resultant parameters like BLDC drive voltage and current analysis, fault diagnosis of BLDC drive with OC and SC, motor speed, torque and detection accuracy are evaluated. The power loss and accuracy are compared with ANN existing technique. The power loss of the existing ANN is 5.8% and the proposed method of AANFIS is 3% and the accuracy of the existing ANN is 97% and proposed method of AANFIS is 98.5%. The proposed method achieves better performance than the existing technique.</description><subject>Algebraic</subject><subject>Analytical Methods in Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Foundation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HdvJEQoFpEpc4MLFcmK7Smmdyk6Kmq_HbTlz2tHozWp3ELqlcEcB1H0CEAAEGCUgoZBkPEMTWnBOVKGq86NmRMmCX6KrlFaQSSX4BH3NzbDusW3NMnSpTbjz-HHxNMM2tjuHh9SGJTZ2Z0LjbBZm2x_84PqfLn6T2qRs-2Ec97gN3kWXOZz2qXeba3ThzTq5m785RZ_z54_ZK1m8v7zNHhakYRXtibGsqgvqpKQCHGPGS9p4r4SUohK1LZWtWVUprkRRmZLzWpTgBC-VccyA4lPETnub2KUUndfb2G5M3GsK-tCOPrWj88_62I4ec4ifQinDYemiXnVDDPnO_1K_grBo3Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Gayatri Sarman, K. V. S. H.</creator><creator>Madhu, T.</creator><creator>Mallikharjuna Prasad, A.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system</title><author>Gayatri Sarman, K. V. S. H. ; Madhu, T. ; Mallikharjuna Prasad, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic</topic><topic>Analytical Methods in Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Foundation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gayatri Sarman, K. V. S. H.</creatorcontrib><creatorcontrib>Madhu, T.</creatorcontrib><creatorcontrib>Mallikharjuna Prasad, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gayatri Sarman, K. V. S. H.</au><au>Madhu, T.</au><au>Mallikharjuna Prasad, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>20</issue><spage>12759</spage><epage>12774</epage><pages>12759-12774</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Brushless direct current (BLDC) motor is widely used in many applications for its high reliability and simplicity. The motor fault-tolerant control is important for its continuous operation even under the fault condition. The fault diagnosis should be achieved to implement the fault-tolerant control method. In our proposed work, short-circuit (SC) and open-circuit (OC) faults are detected in brushless direct current (BLDC) motor by using advanced adaptive network-based fuzzy inference system (AANFIS). AANFIS is a combination of social ski driver (SSD) and advanced adaptive network-based fuzzy inference system (ANFIS) for optimal feature selection and training process. There is no need to give entire data to the first (training) layer of ANFIS which reduces operational complexity, rapid learning capacity without expert knowledge as well as less training period and also SSD is used for the reduction of time complexity and fast convergence; thus, the reason for combining the ANFIS with SSD named as AANFIS is used for better output. Initially, BLDC drive speed is measured by signal speed oscillation. Discrete wavelet transform is used to extract the residual signal from BLDC. The amplitude and frequency of residual signal denote the open-circuit and short-circuit faults. Optimal feature selection will be performed by SSD in training stage of ANFIS. Fault diagnosis is performed through the layer of ANFIS structure and detected results are the outcomes of ANFIS. The proposed work will be implemented in Matlab/Simulink working platform. Resultant parameters like BLDC drive voltage and current analysis, fault diagnosis of BLDC drive with OC and SC, motor speed, torque and detection accuracy are evaluated. The power loss and accuracy are compared with ANN existing technique. The power loss of the existing ANN is 5.8% and the proposed method of AANFIS is 3% and the accuracy of the existing ANN is 97% and proposed method of AANFIS is 98.5%. The proposed method achieves better performance than the existing technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-021-06046-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2021-10, Vol.25 (20), p.12759-12774
issn 1432-7643
1433-7479
language eng
recordid cdi_crossref_primary_10_1007_s00500_021_06046_z
source Springer Link
subjects Algebraic
Analytical Methods in Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Engineering
Foundation
Mathematical Logic and Foundations
Mechatronics
Robotics
title Fault diagnosis of BLDC drive using advanced adaptive network-based fuzzy inference system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20of%20BLDC%20drive%20using%20advanced%20adaptive%20network-based%20fuzzy%20inference%20system&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Gayatri%20Sarman,%20K.%20V.%20S.%20H.&rft.date=2021-10-01&rft.volume=25&rft.issue=20&rft.spage=12759&rft.epage=12774&rft.pages=12759-12774&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-06046-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s00500_021_06046_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ad29b41e66150e22af61cff7566595bd87db299737549a833b580e5387ae2a073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true