Loading…

Constrained classifier: a novel approach to nonlinear classification

Simple classifiers have the advantage of more generalization capability with the side effect of less power. It would be a good idea if we could build a classifier which is as simple as possible while giving it the ability of classifying complex patterns. In this paper, a hybrid classifier called “co...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2013-12, Vol.23 (7-8), p.2367-2377
Main Authors: Abbassi, H., Monsefi, R., Sadoghi Yazdi, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-e743b2bd2ef0b6fb231fdbfb74bdfd735a03150d3463a9626d8d9cbb79da28993
container_end_page 2377
container_issue 7-8
container_start_page 2367
container_title Neural computing & applications
container_volume 23
creator Abbassi, H.
Monsefi, R.
Sadoghi Yazdi, H.
description Simple classifiers have the advantage of more generalization capability with the side effect of less power. It would be a good idea if we could build a classifier which is as simple as possible while giving it the ability of classifying complex patterns. In this paper, a hybrid classifier called “constrained classifier” is presented that classifies most of the input patterns using a simple, for example, a linear classifier. It performs the classification in four steps. In the “Dividing” step, the input patterns are divided into linearly separable and nonlinearly separable groups. The patterns belonging to the first group are classified using a simple classifier while the second group patterns (named “constraints”) are modeled in the “Modeling” step. The results of previous steps are merged together in the “Combining” step. The “Evaluation” step tests and fine tunes the membership of patterns into two groups. The experimental results of comparison of the new classifier with famous classifiers such as “support vector machine”, k-NN, and “Classification and Regression Trees” are very encouraging.
doi_str_mv 10.1007/s00521-012-1194-9
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00521_012_1194_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27907385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e743b2bd2ef0b6fb231fdbfb74bdfd735a03150d3463a9626d8d9cbb79da28993</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcHx8gLtsXEarH0mn3cn4hAE3um6qX5ohdofuKPj3ZojM0lVB1bkX6hByQeGKAsjrAtAwWgNlNaVK1OqArKjgvObQdIdkBUrM11bwY3JSyhYARNs1K3K3TrFMGfvoXWUHLKUPvc83FVYxffuhwnHMCe1HNaV5E4cZxLwnLU59imfkKOBQ_PnfPCVvD_ev66d68_L4vL7d1JZJmGovBTfMOOYDmDYYxmlwJhgpjAtO8gaB0wYcFy1H1bLWdU5ZY6RyyDql-CmhS6_NqZTsgx5z_4n5R1PQOw160aBnDXqnQe8yl0tmxGJxCBmj7cs-yKQCybtm5tjClfkU333W2_SV4_zOP-W_fSZt-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constrained classifier: a novel approach to nonlinear classification</title><source>Springer Link</source><creator>Abbassi, H. ; Monsefi, R. ; Sadoghi Yazdi, H.</creator><creatorcontrib>Abbassi, H. ; Monsefi, R. ; Sadoghi Yazdi, H.</creatorcontrib><description>Simple classifiers have the advantage of more generalization capability with the side effect of less power. It would be a good idea if we could build a classifier which is as simple as possible while giving it the ability of classifying complex patterns. In this paper, a hybrid classifier called “constrained classifier” is presented that classifies most of the input patterns using a simple, for example, a linear classifier. It performs the classification in four steps. In the “Dividing” step, the input patterns are divided into linearly separable and nonlinearly separable groups. The patterns belonging to the first group are classified using a simple classifier while the second group patterns (named “constraints”) are modeled in the “Modeling” step. The results of previous steps are merged together in the “Combining” step. The “Evaluation” step tests and fine tunes the membership of patterns into two groups. The experimental results of comparison of the new classifier with famous classifiers such as “support vector machine”, k-NN, and “Classification and Regression Trees” are very encouraging.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-012-1194-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Applied sciences ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer science; control theory; systems ; Data Mining and Knowledge Discovery ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Image Processing and Computer Vision ; Memory organisation. Data processing ; Original Article ; Probability and Statistics in Computer Science ; Software</subject><ispartof>Neural computing &amp; applications, 2013-12, Vol.23 (7-8), p.2367-2377</ispartof><rights>Springer-Verlag London 2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e743b2bd2ef0b6fb231fdbfb74bdfd735a03150d3463a9626d8d9cbb79da28993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27907385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbassi, H.</creatorcontrib><creatorcontrib>Monsefi, R.</creatorcontrib><creatorcontrib>Sadoghi Yazdi, H.</creatorcontrib><title>Constrained classifier: a novel approach to nonlinear classification</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Simple classifiers have the advantage of more generalization capability with the side effect of less power. It would be a good idea if we could build a classifier which is as simple as possible while giving it the ability of classifying complex patterns. In this paper, a hybrid classifier called “constrained classifier” is presented that classifies most of the input patterns using a simple, for example, a linear classifier. It performs the classification in four steps. In the “Dividing” step, the input patterns are divided into linearly separable and nonlinearly separable groups. The patterns belonging to the first group are classified using a simple classifier while the second group patterns (named “constraints”) are modeled in the “Modeling” step. The results of previous steps are merged together in the “Combining” step. The “Evaluation” step tests and fine tunes the membership of patterns into two groups. The experimental results of comparison of the new classifier with famous classifiers such as “support vector machine”, k-NN, and “Classification and Regression Trees” are very encouraging.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Memory organisation. Data processing</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Software</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcHx8gLtsXEarH0mn3cn4hAE3um6qX5ohdofuKPj3ZojM0lVB1bkX6hByQeGKAsjrAtAwWgNlNaVK1OqArKjgvObQdIdkBUrM11bwY3JSyhYARNs1K3K3TrFMGfvoXWUHLKUPvc83FVYxffuhwnHMCe1HNaV5E4cZxLwnLU59imfkKOBQ_PnfPCVvD_ev66d68_L4vL7d1JZJmGovBTfMOOYDmDYYxmlwJhgpjAtO8gaB0wYcFy1H1bLWdU5ZY6RyyDql-CmhS6_NqZTsgx5z_4n5R1PQOw160aBnDXqnQe8yl0tmxGJxCBmj7cs-yKQCybtm5tjClfkU333W2_SV4_zOP-W_fSZt-A</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Abbassi, H.</creator><creator>Monsefi, R.</creator><creator>Sadoghi Yazdi, H.</creator><general>Springer London</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131201</creationdate><title>Constrained classifier: a novel approach to nonlinear classification</title><author>Abbassi, H. ; Monsefi, R. ; Sadoghi Yazdi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e743b2bd2ef0b6fb231fdbfb74bdfd735a03150d3463a9626d8d9cbb79da28993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Memory organisation. Data processing</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbassi, H.</creatorcontrib><creatorcontrib>Monsefi, R.</creatorcontrib><creatorcontrib>Sadoghi Yazdi, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbassi, H.</au><au>Monsefi, R.</au><au>Sadoghi Yazdi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained classifier: a novel approach to nonlinear classification</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>23</volume><issue>7-8</issue><spage>2367</spage><epage>2377</epage><pages>2367-2377</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Simple classifiers have the advantage of more generalization capability with the side effect of less power. It would be a good idea if we could build a classifier which is as simple as possible while giving it the ability of classifying complex patterns. In this paper, a hybrid classifier called “constrained classifier” is presented that classifies most of the input patterns using a simple, for example, a linear classifier. It performs the classification in four steps. In the “Dividing” step, the input patterns are divided into linearly separable and nonlinearly separable groups. The patterns belonging to the first group are classified using a simple classifier while the second group patterns (named “constraints”) are modeled in the “Modeling” step. The results of previous steps are merged together in the “Combining” step. The “Evaluation” step tests and fine tunes the membership of patterns into two groups. The experimental results of comparison of the new classifier with famous classifiers such as “support vector machine”, k-NN, and “Classification and Regression Trees” are very encouraging.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-012-1194-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2013-12, Vol.23 (7-8), p.2367-2377
issn 0941-0643
1433-3058
language eng
recordid cdi_crossref_primary_10_1007_s00521_012_1194_9
source Springer Link
subjects Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science
control theory
systems
Data Mining and Knowledge Discovery
Data processing. List processing. Character string processing
Exact sciences and technology
Image Processing and Computer Vision
Memory organisation. Data processing
Original Article
Probability and Statistics in Computer Science
Software
title Constrained classifier: a novel approach to nonlinear classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20classifier:%20a%20novel%20approach%20to%20nonlinear%20classification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Abbassi,%20H.&rft.date=2013-12-01&rft.volume=23&rft.issue=7-8&rft.spage=2367&rft.epage=2377&rft.pages=2367-2377&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-012-1194-9&rft_dat=%3Cpascalfrancis_cross%3E27907385%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-e743b2bd2ef0b6fb231fdbfb74bdfd735a03150d3463a9626d8d9cbb79da28993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true