Loading…

Binary optimization using hybrid particle swarm optimization and gravitational search algorithm

The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2014-11, Vol.25 (6), p.1423-1435
Main Authors: Mirjalili, Seyedali, Wang, Gai-Ge, Coelho, Leandro dos S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3
cites cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3
container_end_page 1435
container_issue 6
container_start_page 1423
container_title Neural computing & applications
container_volume 25
creator Mirjalili, Seyedali
Wang, Gai-Ge
Coelho, Leandro dos S.
description The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.
doi_str_mv 10.1007/s00521-014-1629-6
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00521_014_1629_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28887116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLtsXFaTkzRtlzp4gwE3sw-nTdLJ0BtJRxmf3o4VwY2rw-G_wP8Rcs3ZLWcsu4uMpcATxmXCFRSJOiELLoVIBEvzU7JghZxUJcU5uYhxxxiTKk8XRD_4DsOB9sPoW_-Jo-87uo--q-n2UAZv6IBh9FVjafzA0P41YmdoHfDdj98_NjRaDNWWYlP3wY_b9pKcOWyivfq5S7J5etysXpL12_Pr6n6dVCLlYwJFWRoHTFqbQeokGFcIi0aiQrSFAiGgdGAEd6CK0qR5Vhou0YJCsFYsCZ9rq9DHGKzTQ_DtNExzpo-A9AxIT4D0EZBWU-ZmzgwYK2xcwK7y8TcIeZ5nnB99MPviJHW1DXrX78M0Nv5T_gWve3kH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><source>Springer Nature</source><creator>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</creator><creatorcontrib>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</creatorcontrib><description>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-014-1629-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer science; control theory; systems ; Data Mining and Knowledge Discovery ; Exact sciences and technology ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science ; Theoretical computing</subject><ispartof>Neural computing &amp; applications, 2014-11, Vol.25 (6), p.1423-1435</ispartof><rights>Springer-Verlag London 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</citedby><cites>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28887116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Wang, Gai-Ge</creatorcontrib><creatorcontrib>Coelho, Leandro dos S.</creatorcontrib><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Theoretical computing</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLtsXFaTkzRtlzp4gwE3sw-nTdLJ0BtJRxmf3o4VwY2rw-G_wP8Rcs3ZLWcsu4uMpcATxmXCFRSJOiELLoVIBEvzU7JghZxUJcU5uYhxxxiTKk8XRD_4DsOB9sPoW_-Jo-87uo--q-n2UAZv6IBh9FVjafzA0P41YmdoHfDdj98_NjRaDNWWYlP3wY_b9pKcOWyivfq5S7J5etysXpL12_Pr6n6dVCLlYwJFWRoHTFqbQeokGFcIi0aiQrSFAiGgdGAEd6CK0qR5Vhou0YJCsFYsCZ9rq9DHGKzTQ_DtNExzpo-A9AxIT4D0EZBWU-ZmzgwYK2xcwK7y8TcIeZ5nnB99MPviJHW1DXrX78M0Nv5T_gWve3kH</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Mirjalili, Seyedali</creator><creator>Wang, Gai-Ge</creator><creator>Coelho, Leandro dos S.</creator><general>Springer London</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><author>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Wang, Gai-Ge</creatorcontrib><creatorcontrib>Coelho, Leandro dos S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirjalili, Seyedali</au><au>Wang, Gai-Ge</au><au>Coelho, Leandro dos S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>25</volume><issue>6</issue><spage>1423</spage><epage>1435</epage><pages>1423-1435</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-014-1629-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2014-11, Vol.25 (6), p.1423-1435
issn 0941-0643
1433-3058
language eng
recordid cdi_crossref_primary_10_1007_s00521_014_1629_6
source Springer Nature
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science
control theory
systems
Data Mining and Knowledge Discovery
Exact sciences and technology
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
Theoretical computing
title Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20optimization%20using%20hybrid%20particle%20swarm%20optimization%20and%20gravitational%20search%20algorithm&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mirjalili,%20Seyedali&rft.date=2014-11-01&rft.volume=25&rft.issue=6&rft.spage=1423&rft.epage=1435&rft.pages=1423-1435&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-014-1629-6&rft_dat=%3Cpascalfrancis_cross%3E28887116%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true