Loading…
Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of...
Saved in:
Published in: | Neural computing & applications 2014-11, Vol.25 (6), p.1423-1435 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3 |
container_end_page | 1435 |
container_issue | 6 |
container_start_page | 1423 |
container_title | Neural computing & applications |
container_volume | 25 |
creator | Mirjalili, Seyedali Wang, Gai-Ge Coelho, Leandro dos S. |
description | The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate. |
doi_str_mv | 10.1007/s00521-014-1629-6 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00521_014_1629_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28887116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLtsXFaTkzRtlzp4gwE3sw-nTdLJ0BtJRxmf3o4VwY2rw-G_wP8Rcs3ZLWcsu4uMpcATxmXCFRSJOiELLoVIBEvzU7JghZxUJcU5uYhxxxiTKk8XRD_4DsOB9sPoW_-Jo-87uo--q-n2UAZv6IBh9FVjafzA0P41YmdoHfDdj98_NjRaDNWWYlP3wY_b9pKcOWyivfq5S7J5etysXpL12_Pr6n6dVCLlYwJFWRoHTFqbQeokGFcIi0aiQrSFAiGgdGAEd6CK0qR5Vhou0YJCsFYsCZ9rq9DHGKzTQ_DtNExzpo-A9AxIT4D0EZBWU-ZmzgwYK2xcwK7y8TcIeZ5nnB99MPviJHW1DXrX78M0Nv5T_gWve3kH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><source>Springer Nature</source><creator>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</creator><creatorcontrib>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</creatorcontrib><description>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-014-1629-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer science; control theory; systems ; Data Mining and Knowledge Discovery ; Exact sciences and technology ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science ; Theoretical computing</subject><ispartof>Neural computing & applications, 2014-11, Vol.25 (6), p.1423-1435</ispartof><rights>Springer-Verlag London 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</citedby><cites>FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28887116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Wang, Gai-Ge</creatorcontrib><creatorcontrib>Coelho, Leandro dos S.</creatorcontrib><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Theoretical computing</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLtsXFaTkzRtlzp4gwE3sw-nTdLJ0BtJRxmf3o4VwY2rw-G_wP8Rcs3ZLWcsu4uMpcATxmXCFRSJOiELLoVIBEvzU7JghZxUJcU5uYhxxxiTKk8XRD_4DsOB9sPoW_-Jo-87uo--q-n2UAZv6IBh9FVjafzA0P41YmdoHfDdj98_NjRaDNWWYlP3wY_b9pKcOWyivfq5S7J5etysXpL12_Pr6n6dVCLlYwJFWRoHTFqbQeokGFcIi0aiQrSFAiGgdGAEd6CK0qR5Vhou0YJCsFYsCZ9rq9DHGKzTQ_DtNExzpo-A9AxIT4D0EZBWU-ZmzgwYK2xcwK7y8TcIeZ5nnB99MPviJHW1DXrX78M0Nv5T_gWve3kH</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Mirjalili, Seyedali</creator><creator>Wang, Gai-Ge</creator><creator>Coelho, Leandro dos S.</creator><general>Springer London</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</title><author>Mirjalili, Seyedali ; Wang, Gai-Ge ; Coelho, Leandro dos S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Wang, Gai-Ge</creatorcontrib><creatorcontrib>Coelho, Leandro dos S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirjalili, Seyedali</au><au>Wang, Gai-Ge</au><au>Coelho, Leandro dos S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary optimization using hybrid particle swarm optimization and gravitational search algorithm</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>25</volume><issue>6</issue><spage>1423</spage><epage>1435</epage><pages>1423-1435</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-014-1629-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2014-11, Vol.25 (6), p.1423-1435 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00521_014_1629_6 |
source | Springer Nature |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer science control theory systems Data Mining and Knowledge Discovery Exact sciences and technology Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science Theoretical computing |
title | Binary optimization using hybrid particle swarm optimization and gravitational search algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20optimization%20using%20hybrid%20particle%20swarm%20optimization%20and%20gravitational%20search%20algorithm&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mirjalili,%20Seyedali&rft.date=2014-11-01&rft.volume=25&rft.issue=6&rft.spage=1423&rft.epage=1435&rft.pages=1423-1435&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-014-1629-6&rft_dat=%3Cpascalfrancis_cross%3E28887116%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-29bbdf204ee725f42df93ead4a6aae962332bf2d31f269bd587bd14ae26a2ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |