Loading…

Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities

We study the behavior near the origin of C 2 positive solutions u ( x ) and v ( x ) of the system 0 ≤ - Δ u ≤ 1 | x | α ∗ v λ 0 ≤ - Δ v ≤ 1 | x | β ∗ u σ in B 2 ( 0 ) \ { 0 } ⊂ R n , n ≥ 3 , where λ , σ ≥ 0 and α , β ∈ ( 0 , n ) . A by-product of our methods used to study these solutions will be res...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2015-10, Vol.54 (2), p.1243-1273
Main Authors: Ghergu, Marius, Taliaferro, Steven D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913
cites cdi_FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913
container_end_page 1273
container_issue 2
container_start_page 1243
container_title Calculus of variations and partial differential equations
container_volume 54
creator Ghergu, Marius
Taliaferro, Steven D.
description We study the behavior near the origin of C 2 positive solutions u ( x ) and v ( x ) of the system 0 ≤ - Δ u ≤ 1 | x | α ∗ v λ 0 ≤ - Δ v ≤ 1 | x | β ∗ u σ in B 2 ( 0 ) \ { 0 } ⊂ R n , n ≥ 3 , where λ , σ ≥ 0 and α , β ∈ ( 0 , n ) . A by-product of our methods used to study these solutions will be results on the behavior near the origin of L 1 ( B 1 ( 0 ) ) solutions f and g of the system 0 ≤ f ( x ) ≤ C | x | 2 - α + ∫ | y | < 1 g ( y ) d y | x - y | α - 2 λ 0 ≤ g ( x ) ≤ C | x | 2 - β + ∫ | y | < 1 f ( y ) d y | x - y | β - 2 σ for 0 < | x | < 1 where λ , σ ≥ 0 and α , β ∈ ( 2 , n + 2 ) .
doi_str_mv 10.1007/s00526-015-0824-3
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00526_015_0824_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00526_015_0824_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4vMJrb3JaleIOCG12H05mkpmQmNScj9O1NO65dhcP__T_hI-SeswfOWP2IjJWiKhgvC9YIVcgLsuBKinzJ8pIsWKtUIaqqvSY3iHuWwYwtCK7wOBxSSK6jW_MFPy5ECok6DB6S6Sm6cTd5iC45g9TmNCdTcmFEGiwdw-hDB56iGZx3o4FIjffucBrEIyYznLmcfE_gzyu35MqCR3P39y7J5_PTx_q12Ly_vK1Xm6KTZZMKJWRvleHQq7bpmq7kQsIWAKzsalsxMHVVlyB7ZgVrba2ahqnKCGm4qHjL5ZLwebeLATEaqw_RDRCPmjN9sqZnazrL0CdrWuaOmDuY2XFnot6HKY75m_-UfgHwcXMl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities</title><source>Springer Nature</source><creator>Ghergu, Marius ; Taliaferro, Steven D.</creator><creatorcontrib>Ghergu, Marius ; Taliaferro, Steven D.</creatorcontrib><description>We study the behavior near the origin of C 2 positive solutions u ( x ) and v ( x ) of the system 0 ≤ - Δ u ≤ 1 | x | α ∗ v λ 0 ≤ - Δ v ≤ 1 | x | β ∗ u σ in B 2 ( 0 ) \ { 0 } ⊂ R n , n ≥ 3 , where λ , σ ≥ 0 and α , β ∈ ( 0 , n ) . A by-product of our methods used to study these solutions will be results on the behavior near the origin of L 1 ( B 1 ( 0 ) ) solutions f and g of the system 0 ≤ f ( x ) ≤ C | x | 2 - α + ∫ | y | &lt; 1 g ( y ) d y | x - y | α - 2 λ 0 ≤ g ( x ) ≤ C | x | 2 - β + ∫ | y | &lt; 1 f ( y ) d y | x - y | β - 2 σ for 0 &lt; | x | &lt; 1 where λ , σ ≥ 0 and α , β ∈ ( 2 , n + 2 ) .</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-015-0824-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2015-10, Vol.54 (2), p.1243-1273</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913</citedby><cites>FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghergu, Marius</creatorcontrib><creatorcontrib>Taliaferro, Steven D.</creatorcontrib><title>Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We study the behavior near the origin of C 2 positive solutions u ( x ) and v ( x ) of the system 0 ≤ - Δ u ≤ 1 | x | α ∗ v λ 0 ≤ - Δ v ≤ 1 | x | β ∗ u σ in B 2 ( 0 ) \ { 0 } ⊂ R n , n ≥ 3 , where λ , σ ≥ 0 and α , β ∈ ( 0 , n ) . A by-product of our methods used to study these solutions will be results on the behavior near the origin of L 1 ( B 1 ( 0 ) ) solutions f and g of the system 0 ≤ f ( x ) ≤ C | x | 2 - α + ∫ | y | &lt; 1 g ( y ) d y | x - y | α - 2 λ 0 ≤ g ( x ) ≤ C | x | 2 - β + ∫ | y | &lt; 1 f ( y ) d y | x - y | β - 2 σ for 0 &lt; | x | &lt; 1 where λ , σ ≥ 0 and α , β ∈ ( 2 , n + 2 ) .</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4vMJrb3JaleIOCG12H05mkpmQmNScj9O1NO65dhcP__T_hI-SeswfOWP2IjJWiKhgvC9YIVcgLsuBKinzJ8pIsWKtUIaqqvSY3iHuWwYwtCK7wOBxSSK6jW_MFPy5ECok6DB6S6Sm6cTd5iC45g9TmNCdTcmFEGiwdw-hDB56iGZx3o4FIjffucBrEIyYznLmcfE_gzyu35MqCR3P39y7J5_PTx_q12Ly_vK1Xm6KTZZMKJWRvleHQq7bpmq7kQsIWAKzsalsxMHVVlyB7ZgVrba2ahqnKCGm4qHjL5ZLwebeLATEaqw_RDRCPmjN9sqZnazrL0CdrWuaOmDuY2XFnot6HKY75m_-UfgHwcXMl</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ghergu, Marius</creator><creator>Taliaferro, Steven D.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities</title><author>Ghergu, Marius ; Taliaferro, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghergu, Marius</creatorcontrib><creatorcontrib>Taliaferro, Steven D.</creatorcontrib><collection>CrossRef</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghergu, Marius</au><au>Taliaferro, Steven D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>54</volume><issue>2</issue><spage>1243</spage><epage>1273</epage><pages>1243-1273</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We study the behavior near the origin of C 2 positive solutions u ( x ) and v ( x ) of the system 0 ≤ - Δ u ≤ 1 | x | α ∗ v λ 0 ≤ - Δ v ≤ 1 | x | β ∗ u σ in B 2 ( 0 ) \ { 0 } ⊂ R n , n ≥ 3 , where λ , σ ≥ 0 and α , β ∈ ( 0 , n ) . A by-product of our methods used to study these solutions will be results on the behavior near the origin of L 1 ( B 1 ( 0 ) ) solutions f and g of the system 0 ≤ f ( x ) ≤ C | x | 2 - α + ∫ | y | &lt; 1 g ( y ) d y | x - y | α - 2 λ 0 ≤ g ( x ) ≤ C | x | 2 - β + ∫ | y | &lt; 1 f ( y ) d y | x - y | β - 2 σ for 0 &lt; | x | &lt; 1 where λ , σ ≥ 0 and α , β ∈ ( 2 , n + 2 ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-015-0824-3</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2015-10, Vol.54 (2), p.1243-1273
issn 0944-2669
1432-0835
language eng
recordid cdi_crossref_primary_10_1007_s00526_015_0824_3
source Springer Nature
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
title Asymptotic behavior at isolated singularities for solutions of nonlocal semilinear elliptic systems of inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20behavior%20at%20isolated%20singularities%20for%20solutions%20of%20nonlocal%20semilinear%20elliptic%20systems%20of%20inequalities&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Ghergu,%20Marius&rft.date=2015-10-01&rft.volume=54&rft.issue=2&rft.spage=1243&rft.epage=1273&rft.pages=1243-1273&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-015-0824-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s00526_015_0824_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-423df4e1ad498c8c5123abaaaf3c7f60ae7675a3d0f209f7488046e23e1261913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true