Loading…

From MEMS devices to smart integrated systems

The smart integrated systems of tomorrow would demand a combination of micromechanical components and traditional electronics. On-chip solutions will be the ultimate goal. One way of making such systems is to implement the mechanical parts in an ordinary CMOS process. This procedure has been used to...

Full description

Saved in:
Bibliographic Details
Published in:Microsystem technologies 2008-07, Vol.14 (7), p.895-901
Main Authors: Soeraasen, O., Ramstad, J. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The smart integrated systems of tomorrow would demand a combination of micromechanical components and traditional electronics. On-chip solutions will be the ultimate goal. One way of making such systems is to implement the mechanical parts in an ordinary CMOS process. This procedure has been used to design an oscillator consisting of a resonating cantilever beam and a CMOS Pierce feedback amplifier. The resonating frequency is changed if the beam is bent by external forces. The paper describes central features of this procedure and highlights the design considerations for the CMOS-MEMS oscillator. The circuit is used as an example of a “VLSI designer” way of making future integrated micromechanical and microelectronic systems on-chip. The possibility for expansion to larger systems is reviewed.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-007-0523-x