Loading…

Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory

In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of F...

Full description

Saved in:
Bibliographic Details
Published in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316
Main Authors: Hosseini, M., Mofidi, M. R., Jamalpoor, A., Safi Jahanshahi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53
cites cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53
container_end_page 2316
container_issue 5
container_start_page 2295
container_title Microsystem technologies : sensors, actuators, systems integration
container_volume 24
creator Hosseini, M.
Mofidi, M. R.
Jamalpoor, A.
Safi Jahanshahi, M.
description In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.
doi_str_mv 10.1007/s00542-017-3654-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00542_017_3654_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00542_017_3654_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAHa-gMF2kiZZoooWpBY2sI7G9qSkSuzKE5B6Ec6LQ1mzGn3pvz_SY-xWyTslZXlPUha5FlKVIlsUuajO2EzlmRaqKqpzNpN1vhClLBeX7IpoLxNTV9mMfb-AD2ShRz4AEfdTRE8hcgOEjgfPxw_kX52JMHYpgYf-SB3x0HIcDDqXWgPsPI5BYI92jNMFGjv7O3foYZzWHU7Iar2ltAbcB9-H9JhvO-_6zvNTLz0L8XjNLlroCW_-7py9rx7flk9i87p-Xj5shM0yNYoqN0YXShunda6gyl1rQSpTtK3B0hpXYgaZdi0WtV2gsa1SpbE1Vg41QJHNmTrt2hiIIrbNIXYDxGOjZDOJbU5imyS2mcQ2VWL0iaHU9TuMzT58xmSF_oF-AHnagKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><source>Springer Link</source><creator>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</creator><creatorcontrib>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</creatorcontrib><description>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-017-3654-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Electronics and Microelectronics ; Engineering ; Instrumentation ; Mechanical Engineering ; Nanotechnology ; Technical Paper</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</citedby><cites>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Mofidi, M. R.</creatorcontrib><creatorcontrib>Jamalpoor, A.</creatorcontrib><creatorcontrib>Safi Jahanshahi, M.</creatorcontrib><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</description><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Mechanical Engineering</subject><subject>Nanotechnology</subject><subject>Technical Paper</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAHa-gMF2kiZZoooWpBY2sI7G9qSkSuzKE5B6Ec6LQ1mzGn3pvz_SY-xWyTslZXlPUha5FlKVIlsUuajO2EzlmRaqKqpzNpN1vhClLBeX7IpoLxNTV9mMfb-AD2ShRz4AEfdTRE8hcgOEjgfPxw_kX52JMHYpgYf-SB3x0HIcDDqXWgPsPI5BYI92jNMFGjv7O3foYZzWHU7Iar2ltAbcB9-H9JhvO-_6zvNTLz0L8XjNLlroCW_-7py9rx7flk9i87p-Xj5shM0yNYoqN0YXShunda6gyl1rQSpTtK3B0hpXYgaZdi0WtV2gsa1SpbE1Vg41QJHNmTrt2hiIIrbNIXYDxGOjZDOJbU5imyS2mcQ2VWL0iaHU9TuMzT58xmSF_oF-AHnagKc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hosseini, M.</creator><creator>Mofidi, M. R.</creator><creator>Jamalpoor, A.</creator><creator>Safi Jahanshahi, M.</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><author>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Mechanical Engineering</topic><topic>Nanotechnology</topic><topic>Technical Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Mofidi, M. R.</creatorcontrib><creatorcontrib>Jamalpoor, A.</creatorcontrib><creatorcontrib>Safi Jahanshahi, M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, M.</au><au>Mofidi, M. R.</au><au>Jamalpoor, A.</au><au>Safi Jahanshahi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>24</volume><issue>5</issue><spage>2295</spage><epage>2316</epage><pages>2295-2316</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-017-3654-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-7076
ispartof Microsystem technologies : sensors, actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316
issn 0946-7076
1432-1858
language eng
recordid cdi_crossref_primary_10_1007_s00542_017_3654_8
source Springer Link
subjects Electronics and Microelectronics
Engineering
Instrumentation
Mechanical Engineering
Nanotechnology
Technical Paper
title Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20mass%20nanosensor%20based%20on%20the%20vibration%20analysis%20of%20embedded%20magneto-electro-elastic%20nanoplate%20made%20of%20FGMs%20via%20nonlocal%20Mindlin%20plate%20theory&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Hosseini,%20M.&rft.date=2018-05-01&rft.volume=24&rft.issue=5&rft.spage=2295&rft.epage=2316&rft.pages=2295-2316&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-017-3654-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00542_017_3654_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true