Loading…
Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory
In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of F...
Saved in:
Published in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53 |
container_end_page | 2316 |
container_issue | 5 |
container_start_page | 2295 |
container_title | Microsystem technologies : sensors, actuators, systems integration |
container_volume | 24 |
creator | Hosseini, M. Mofidi, M. R. Jamalpoor, A. Safi Jahanshahi, M. |
description | In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift. |
doi_str_mv | 10.1007/s00542-017-3654-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00542_017_3654_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00542_017_3654_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAHa-gMF2kiZZoooWpBY2sI7G9qSkSuzKE5B6Ec6LQ1mzGn3pvz_SY-xWyTslZXlPUha5FlKVIlsUuajO2EzlmRaqKqpzNpN1vhClLBeX7IpoLxNTV9mMfb-AD2ShRz4AEfdTRE8hcgOEjgfPxw_kX52JMHYpgYf-SB3x0HIcDDqXWgPsPI5BYI92jNMFGjv7O3foYZzWHU7Iar2ltAbcB9-H9JhvO-_6zvNTLz0L8XjNLlroCW_-7py9rx7flk9i87p-Xj5shM0yNYoqN0YXShunda6gyl1rQSpTtK3B0hpXYgaZdi0WtV2gsa1SpbE1Vg41QJHNmTrt2hiIIrbNIXYDxGOjZDOJbU5imyS2mcQ2VWL0iaHU9TuMzT58xmSF_oF-AHnagKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><source>Springer Link</source><creator>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</creator><creatorcontrib>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</creatorcontrib><description>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-017-3654-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Electronics and Microelectronics ; Engineering ; Instrumentation ; Mechanical Engineering ; Nanotechnology ; Technical Paper</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</citedby><cites>FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Mofidi, M. R.</creatorcontrib><creatorcontrib>Jamalpoor, A.</creatorcontrib><creatorcontrib>Safi Jahanshahi, M.</creatorcontrib><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</description><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Mechanical Engineering</subject><subject>Nanotechnology</subject><subject>Technical Paper</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAHa-gMF2kiZZoooWpBY2sI7G9qSkSuzKE5B6Ec6LQ1mzGn3pvz_SY-xWyTslZXlPUha5FlKVIlsUuajO2EzlmRaqKqpzNpN1vhClLBeX7IpoLxNTV9mMfb-AD2ShRz4AEfdTRE8hcgOEjgfPxw_kX52JMHYpgYf-SB3x0HIcDDqXWgPsPI5BYI92jNMFGjv7O3foYZzWHU7Iar2ltAbcB9-H9JhvO-_6zvNTLz0L8XjNLlroCW_-7py9rx7flk9i87p-Xj5shM0yNYoqN0YXShunda6gyl1rQSpTtK3B0hpXYgaZdi0WtV2gsa1SpbE1Vg41QJHNmTrt2hiIIrbNIXYDxGOjZDOJbU5imyS2mcQ2VWL0iaHU9TuMzT58xmSF_oF-AHnagKc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hosseini, M.</creator><creator>Mofidi, M. R.</creator><creator>Jamalpoor, A.</creator><creator>Safi Jahanshahi, M.</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</title><author>Hosseini, M. ; Mofidi, M. R. ; Jamalpoor, A. ; Safi Jahanshahi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Mechanical Engineering</topic><topic>Nanotechnology</topic><topic>Technical Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Mofidi, M. R.</creatorcontrib><creatorcontrib>Jamalpoor, A.</creatorcontrib><creatorcontrib>Safi Jahanshahi, M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, M.</au><au>Mofidi, M. R.</au><au>Jamalpoor, A.</au><au>Safi Jahanshahi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>24</volume><issue>5</issue><spage>2295</spage><epage>2316</epage><pages>2295-2316</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>In the current paper, the sensitivity performance of functionally graded magneto-electro-elastic (FG-MEE) nanoplate with attached nanoparticles as a nanosensor is analyzed based on nonlocal Mindlin plate assumption. Power law distribution model is employed to display how the material properties of FG-MEE nanoplate vary across the thickness direction. It is supposed that FG-MEE nanoplate is under initial external electric and magnetic potentials. Boundary condition of each edge of FG-MEE nanoplate is assumed to be simply supported. Furthermore, a Pasternak substrate is applied for modelling the total reaction pressure between nanoplate and foundation. Partial differential equations and corresponding boundary conditions are first achieved using Hamilton’s variational principle and then analytically solved to determine the frequency shift utilizing Navier’s approach. Numerical examples are performed to elucidate the dependency of the sensitivity performance of FG-MEE nanosensor on the volume fraction exponent, nonlocal parameter, total attached mass and location of the nanoparticle, aspect ratio, mode number, initial external electric voltage, initial external magnetic potential, and Pasternak medium coefficients. It is clearly indicated that these factors have highly significant impacts on the variations of frequency shift.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-017-3654-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-7076 |
ispartof | Microsystem technologies : sensors, actuators, systems integration, 2018-05, Vol.24 (5), p.2295-2316 |
issn | 0946-7076 1432-1858 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00542_017_3654_8 |
source | Springer Link |
subjects | Electronics and Microelectronics Engineering Instrumentation Mechanical Engineering Nanotechnology Technical Paper |
title | Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20mass%20nanosensor%20based%20on%20the%20vibration%20analysis%20of%20embedded%20magneto-electro-elastic%20nanoplate%20made%20of%20FGMs%20via%20nonlocal%20Mindlin%20plate%20theory&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Hosseini,%20M.&rft.date=2018-05-01&rft.volume=24&rft.issue=5&rft.spage=2295&rft.epage=2316&rft.pages=2295-2316&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-017-3654-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s00542_017_3654_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-84bb2512bd2241a84dfca01b5ffbe7cbd7e3a32dfe59c6ebcf117bc9e8de2aa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |