Loading…
Fabrication of SU-8 photoresist micro–nanofluidic chips by thermal imprinting and thermal bonding
Micro–nanofluidic chips have been widely applied in biological and medical fields. In this paper, a simple and low-cost fabrication method for micro–nano fluidic chips is proposed. The nano-channels are fabricated by thermal nano-imprinting on an SU-8 photoresist layer followed by thermal bonding wi...
Saved in:
Published in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2020-03, Vol.26 (3), p.861-866 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Micro–nanofluidic chips have been widely applied in biological and medical fields. In this paper, a simple and low-cost fabrication method for micro–nano fluidic chips is proposed. The nano-channels are fabricated by thermal nano-imprinting on an SU-8 photoresist layer followed by thermal bonding with a second SU-8 photoresist layer. The micro-channels are produced on the second layer by UV exposure and then thermal bonded by a third layer of SU-8 photoresist. The final micro–nano fluidic chip consists of micro-channels (width of 200.0 ± 0.1 μm and, depth of 8.0 ± 0.1 μm) connected by nano-channels (width of 533 ± 6 nm and, depth of 372 ± 6 nm), which has great potential in molecular filtering and detection. |
---|---|
ISSN: | 0946-7076 1432-1858 |
DOI: | 10.1007/s00542-019-04565-2 |