Loading…

AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices

Rock mass classification is fundamental for evaluating rock mass quality, essential for stability analysis and geotechnical design. Traditional classification methods are limited by joint observation technology, which typically gathers joint information from one-dimensional or two-dimensional perspe...

Full description

Saved in:
Bibliographic Details
Published in:Rock mechanics and rock engineering 2024-11
Main Authors: Saadati, Ghader, Javankhoshdel, Sina, Mohebbi Najm Abad, Javad, Mett, Michael, Kontrus, Heiner, Schneider-Muntau, Barbara
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-9266d8724e6125c8579885901a2e8c7a590af8574ccf8cc4b65441a1a5474c923
container_end_page
container_issue
container_start_page
container_title Rock mechanics and rock engineering
container_volume
creator Saadati, Ghader
Javankhoshdel, Sina
Mohebbi Najm Abad, Javad
Mett, Michael
Kontrus, Heiner
Schneider-Muntau, Barbara
description Rock mass classification is fundamental for evaluating rock mass quality, essential for stability analysis and geotechnical design. Traditional classification methods are limited by joint observation technology, which typically gathers joint information from one-dimensional or two-dimensional perspectives, failing to comprehensively capture three-dimensional joint occurrences. This often necessitates empirical formulas for joint distribution, resulting in less precise joint parameter calculations. This paper reviews 44 seminal articles on rock engineering classification in construction and subterranean projects, tracing the evolution from foundational methods like Rock Quality Designation, Rock Mass Rating, Q-system, Basic Quality, and Hydropower Classification to contemporary techniques. It highlights the transformative impact of data science, particularly artificial intelligence, on rock engineering. The analysis reveals 73 distinct algorithms used 162 times in literature, with Support Vector Machines Support, Vector Regression, K-means clustering, K-Nearest Neighbors, Artificial Neural Networks and Random Forest being the most successful. This paper examines each method's advantage and limitations, discussing the challenges of algorithm deployment in the scientific community. The findings underscore the integration of machine learning and meta-heuristic optimization methods in rock engineering classification, offering valuable insights for future research and applications.
doi_str_mv 10.1007/s00603-024-04189-7
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00603_024_04189_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00603_024_04189_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-9266d8724e6125c8579885901a2e8c7a590af8574ccf8cc4b65441a1a5474c923</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKsv4CovEL35mUnGXRlqW6hY_AFxE-Jt0kbrjCQD4tubWjf3XM45nMVHyCWHKw6grzNADZKBUAwUNw3TR2TElVRMVfLlmIxAC8lELcUpOcv5HaCE2ozI62TBVv23T35NZ74fPG67iPmGTrut6zB2G_rQ4we9cznTdlduDBHdEPuOhj7RRxd8KuVN7LxP-_oqORwi-nxOToLbZX_xr2PyfDt9audseT9btJMlQ6HEwBpR12ujhfI1FxWaSjfGVA1wJ7xB7crrQnEVYjCI6q2ulOKOu0oVrxFyTMRhF1Ofc_LBfqX46dKP5WD3dOyBji107B8dq-UvJoRXaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices</title><source>Springer Link</source><creator>Saadati, Ghader ; Javankhoshdel, Sina ; Mohebbi Najm Abad, Javad ; Mett, Michael ; Kontrus, Heiner ; Schneider-Muntau, Barbara</creator><creatorcontrib>Saadati, Ghader ; Javankhoshdel, Sina ; Mohebbi Najm Abad, Javad ; Mett, Michael ; Kontrus, Heiner ; Schneider-Muntau, Barbara</creatorcontrib><description>Rock mass classification is fundamental for evaluating rock mass quality, essential for stability analysis and geotechnical design. Traditional classification methods are limited by joint observation technology, which typically gathers joint information from one-dimensional or two-dimensional perspectives, failing to comprehensively capture three-dimensional joint occurrences. This often necessitates empirical formulas for joint distribution, resulting in less precise joint parameter calculations. This paper reviews 44 seminal articles on rock engineering classification in construction and subterranean projects, tracing the evolution from foundational methods like Rock Quality Designation, Rock Mass Rating, Q-system, Basic Quality, and Hydropower Classification to contemporary techniques. It highlights the transformative impact of data science, particularly artificial intelligence, on rock engineering. The analysis reveals 73 distinct algorithms used 162 times in literature, with Support Vector Machines Support, Vector Regression, K-means clustering, K-Nearest Neighbors, Artificial Neural Networks and Random Forest being the most successful. This paper examines each method's advantage and limitations, discussing the challenges of algorithm deployment in the scientific community. The findings underscore the integration of machine learning and meta-heuristic optimization methods in rock engineering classification, offering valuable insights for future research and applications.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-024-04189-7</identifier><language>eng</language><ispartof>Rock mechanics and rock engineering, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-9266d8724e6125c8579885901a2e8c7a590af8574ccf8cc4b65441a1a5474c923</cites><orcidid>0000-0002-2678-9084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Saadati, Ghader</creatorcontrib><creatorcontrib>Javankhoshdel, Sina</creatorcontrib><creatorcontrib>Mohebbi Najm Abad, Javad</creatorcontrib><creatorcontrib>Mett, Michael</creatorcontrib><creatorcontrib>Kontrus, Heiner</creatorcontrib><creatorcontrib>Schneider-Muntau, Barbara</creatorcontrib><title>AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices</title><title>Rock mechanics and rock engineering</title><description>Rock mass classification is fundamental for evaluating rock mass quality, essential for stability analysis and geotechnical design. Traditional classification methods are limited by joint observation technology, which typically gathers joint information from one-dimensional or two-dimensional perspectives, failing to comprehensively capture three-dimensional joint occurrences. This often necessitates empirical formulas for joint distribution, resulting in less precise joint parameter calculations. This paper reviews 44 seminal articles on rock engineering classification in construction and subterranean projects, tracing the evolution from foundational methods like Rock Quality Designation, Rock Mass Rating, Q-system, Basic Quality, and Hydropower Classification to contemporary techniques. It highlights the transformative impact of data science, particularly artificial intelligence, on rock engineering. The analysis reveals 73 distinct algorithms used 162 times in literature, with Support Vector Machines Support, Vector Regression, K-means clustering, K-Nearest Neighbors, Artificial Neural Networks and Random Forest being the most successful. This paper examines each method's advantage and limitations, discussing the challenges of algorithm deployment in the scientific community. The findings underscore the integration of machine learning and meta-heuristic optimization methods in rock engineering classification, offering valuable insights for future research and applications.</description><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEUhYMoWKsv4CovEL35mUnGXRlqW6hY_AFxE-Jt0kbrjCQD4tubWjf3XM45nMVHyCWHKw6grzNADZKBUAwUNw3TR2TElVRMVfLlmIxAC8lELcUpOcv5HaCE2ozI62TBVv23T35NZ74fPG67iPmGTrut6zB2G_rQ4we9cznTdlduDBHdEPuOhj7RRxd8KuVN7LxP-_oqORwi-nxOToLbZX_xr2PyfDt9audseT9btJMlQ6HEwBpR12ujhfI1FxWaSjfGVA1wJ7xB7crrQnEVYjCI6q2ulOKOu0oVrxFyTMRhF1Ofc_LBfqX46dKP5WD3dOyBji107B8dq-UvJoRXaQ</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Saadati, Ghader</creator><creator>Javankhoshdel, Sina</creator><creator>Mohebbi Najm Abad, Javad</creator><creator>Mett, Michael</creator><creator>Kontrus, Heiner</creator><creator>Schneider-Muntau, Barbara</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2678-9084</orcidid></search><sort><creationdate>20241113</creationdate><title>AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices</title><author>Saadati, Ghader ; Javankhoshdel, Sina ; Mohebbi Najm Abad, Javad ; Mett, Michael ; Kontrus, Heiner ; Schneider-Muntau, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-9266d8724e6125c8579885901a2e8c7a590af8574ccf8cc4b65441a1a5474c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadati, Ghader</creatorcontrib><creatorcontrib>Javankhoshdel, Sina</creatorcontrib><creatorcontrib>Mohebbi Najm Abad, Javad</creatorcontrib><creatorcontrib>Mett, Michael</creatorcontrib><creatorcontrib>Kontrus, Heiner</creatorcontrib><creatorcontrib>Schneider-Muntau, Barbara</creatorcontrib><collection>CrossRef</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadati, Ghader</au><au>Javankhoshdel, Sina</au><au>Mohebbi Najm Abad, Javad</au><au>Mett, Michael</au><au>Kontrus, Heiner</au><au>Schneider-Muntau, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices</atitle><jtitle>Rock mechanics and rock engineering</jtitle><date>2024-11-13</date><risdate>2024</risdate><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Rock mass classification is fundamental for evaluating rock mass quality, essential for stability analysis and geotechnical design. Traditional classification methods are limited by joint observation technology, which typically gathers joint information from one-dimensional or two-dimensional perspectives, failing to comprehensively capture three-dimensional joint occurrences. This often necessitates empirical formulas for joint distribution, resulting in less precise joint parameter calculations. This paper reviews 44 seminal articles on rock engineering classification in construction and subterranean projects, tracing the evolution from foundational methods like Rock Quality Designation, Rock Mass Rating, Q-system, Basic Quality, and Hydropower Classification to contemporary techniques. It highlights the transformative impact of data science, particularly artificial intelligence, on rock engineering. The analysis reveals 73 distinct algorithms used 162 times in literature, with Support Vector Machines Support, Vector Regression, K-means clustering, K-Nearest Neighbors, Artificial Neural Networks and Random Forest being the most successful. This paper examines each method's advantage and limitations, discussing the challenges of algorithm deployment in the scientific community. The findings underscore the integration of machine learning and meta-heuristic optimization methods in rock engineering classification, offering valuable insights for future research and applications.</abstract><doi>10.1007/s00603-024-04189-7</doi><orcidid>https://orcid.org/0000-0002-2678-9084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2024-11
issn 0723-2632
1434-453X
language eng
recordid cdi_crossref_primary_10_1007_s00603_024_04189_7
source Springer Link
title AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Powered%20Geotechnics:%20Enhancing%20Rock%20Mass%20Classification%20for%20Safer%20Engineering%20Practices&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Saadati,%20Ghader&rft.date=2024-11-13&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-024-04189-7&rft_dat=%3Ccrossref%3E10_1007_s00603_024_04189_7%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-9266d8724e6125c8579885901a2e8c7a590af8574ccf8cc4b65441a1a5474c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true