Loading…

Electrolytic molybdenum sulfides for thin-layer lithium power sources

The active molybdenum sulfide compound Mo 2 S 3 , which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry 2008-09, Vol.12 (9), p.1151-1157
Main Authors: Shembel, E., Apostolova, R., Kirsanova, I., Tysyachny, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783
cites cdi_FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783
container_end_page 1157
container_issue 9
container_start_page 1151
container_title Journal of solid state electrochemistry
container_volume 12
creator Shembel, E.
Apostolova, R.
Kirsanova, I.
Tysyachny, V.
description The active molybdenum sulfide compound Mo 2 S 3 , which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo 2 S 3 have been obtained. Activation energy of Li + migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo 2 S 3 electrode/electrolyte interface (38.8 kJ/mol), and Li + diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li + transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo 2 S 3 .
doi_str_mv 10.1007/s10008-007-0463-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10008_007_0463_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10008_007_0463_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlMIHcMsPGLzE2xFVYZEqcYGzFW-QykkqOxHK3-NQzr28mdF78zQaAO4xesAIicdcJpKwUIhqTiG7ABtcUwqR4PLyjxMoaymvwU3OB4Sw4BhtQNNEb6c0xmXqbNUXNM4Pc1_lOYbO-VyFMVXTdzfA2C4-VbErouyP409ReZyT9fkWXIU2Zn_3j1vw-dx87F7h_v3lbfe0h5ZIOcHADeOYU2MUVsGQ4ARlTlIbWMtrhYhlNHhHVUtMIAELYgU2ziqGkVBC0i3Ap782jTknH_QxdX2bFo2RXnvQpx70StceNCsecvLkcjt8-aQPJfRQYp4x_QK57GF2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrolytic molybdenum sulfides for thin-layer lithium power sources</title><source>Springer Link</source><creator>Shembel, E. ; Apostolova, R. ; Kirsanova, I. ; Tysyachny, V.</creator><creatorcontrib>Shembel, E. ; Apostolova, R. ; Kirsanova, I. ; Tysyachny, V.</creatorcontrib><description>The active molybdenum sulfide compound Mo 2 S 3 , which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo 2 S 3 have been obtained. Activation energy of Li + migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo 2 S 3 electrode/electrolyte interface (38.8 kJ/mol), and Li + diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li + transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo 2 S 3 .</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-007-0463-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Original Paper ; Physical Chemistry</subject><ispartof>Journal of solid state electrochemistry, 2008-09, Vol.12 (9), p.1151-1157</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783</citedby><cites>FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shembel, E.</creatorcontrib><creatorcontrib>Apostolova, R.</creatorcontrib><creatorcontrib>Kirsanova, I.</creatorcontrib><creatorcontrib>Tysyachny, V.</creatorcontrib><title>Electrolytic molybdenum sulfides for thin-layer lithium power sources</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The active molybdenum sulfide compound Mo 2 S 3 , which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo 2 S 3 have been obtained. Activation energy of Li + migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo 2 S 3 electrode/electrolyte interface (38.8 kJ/mol), and Li + diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li + transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo 2 S 3 .</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAUtBBIlMIHcMsPGLzE2xFVYZEqcYGzFW-QykkqOxHK3-NQzr28mdF78zQaAO4xesAIicdcJpKwUIhqTiG7ABtcUwqR4PLyjxMoaymvwU3OB4Sw4BhtQNNEb6c0xmXqbNUXNM4Pc1_lOYbO-VyFMVXTdzfA2C4-VbErouyP409ReZyT9fkWXIU2Zn_3j1vw-dx87F7h_v3lbfe0h5ZIOcHADeOYU2MUVsGQ4ARlTlIbWMtrhYhlNHhHVUtMIAELYgU2ziqGkVBC0i3Ap782jTknH_QxdX2bFo2RXnvQpx70StceNCsecvLkcjt8-aQPJfRQYp4x_QK57GF2</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Shembel, E.</creator><creator>Apostolova, R.</creator><creator>Kirsanova, I.</creator><creator>Tysyachny, V.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080901</creationdate><title>Electrolytic molybdenum sulfides for thin-layer lithium power sources</title><author>Shembel, E. ; Apostolova, R. ; Kirsanova, I. ; Tysyachny, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shembel, E.</creatorcontrib><creatorcontrib>Apostolova, R.</creatorcontrib><creatorcontrib>Kirsanova, I.</creatorcontrib><creatorcontrib>Tysyachny, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shembel, E.</au><au>Apostolova, R.</au><au>Kirsanova, I.</au><au>Tysyachny, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolytic molybdenum sulfides for thin-layer lithium power sources</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>12</volume><issue>9</issue><spage>1151</spage><epage>1157</epage><pages>1151-1157</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The active molybdenum sulfide compound Mo 2 S 3 , which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo 2 S 3 have been obtained. Activation energy of Li + migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo 2 S 3 electrode/electrolyte interface (38.8 kJ/mol), and Li + diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li + transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo 2 S 3 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10008-007-0463-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2008-09, Vol.12 (9), p.1151-1157
issn 1432-8488
1433-0768
language eng
recordid cdi_crossref_primary_10_1007_s10008_007_0463_5
source Springer Link
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy Storage
Original Paper
Physical Chemistry
title Electrolytic molybdenum sulfides for thin-layer lithium power sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolytic%20molybdenum%20sulfides%20for%20thin-layer%20lithium%20power%20sources&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Shembel,%20E.&rft.date=2008-09-01&rft.volume=12&rft.issue=9&rft.spage=1151&rft.epage=1157&rft.pages=1151-1157&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-007-0463-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s10008_007_0463_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-f6b56163bb919fb2fd735d83cf5a64902c53fed39a2bf2f172c71bdc951079783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true