Loading…

Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model

The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al 3+ and O 2− transport numbers acr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry 2009-12, Vol.13 (12), p.1831-1847
Main Authors: Patermarakis, G., Karayianni, H., Masavetas, K., Chandrinos, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53
cites cdi_FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53
container_end_page 1847
container_issue 12
container_start_page 1831
container_title Journal of solid state electrochemistry
container_volume 13
creator Patermarakis, G.
Karayianni, H.
Masavetas, K.
Chandrinos, J.
description The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al 3+ and O 2− transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O 2− anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59–5.22 g cm −3 in oxide|electrolyte interface with mean value ≈3.21–3.52 g cm −3 . The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al 3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution.
doi_str_mv 10.1007/s10008-008-0745-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10008_008_0745_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10008_008_0745_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53</originalsourceid><addsrcrecordid>eNp9UUtOxDAMrRBIwMAB2OUAFJL-EtghxE8aaTawrtLYnWamTUZJCvSkXIdMhzUL27Hj52f5JckVozeMUn7ro6cinY0XZVodJWesyPOYVeJ4fmepKIQ4Tc6931DKeMXoWfKz-taABNB4HSYC2genmzFoa4hUznpPQoekkc5pdKSXU_QwOm3W84cPKGGKQQYka2e_QkdsS3bW2dETaSxoRWQ_DtpI0up-8PdEdc4au7MBTeQZMLjpmmy1waCV36MH6fdYiAxabQ3GDD9t_7dVrEvS6XUX52EPJBYjx6DXTs4NgwXsL5KTVvYeL__iIvl4fnp_fE2Xq5e3x4dlqjIhQlpWbVEqkVV3DUNUNKcZa0pQXILIClUWHLKcVYKrOwGCQwNcAIe2AVRV05b5ImGHufOtHLb1zulBuqlmtN4rUx-UqWeLytRVxGQHjN_t74iu3tjRmbjmP6BfxFaY8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model</title><source>Springer Nature</source><creator>Patermarakis, G. ; Karayianni, H. ; Masavetas, K. ; Chandrinos, J.</creator><creatorcontrib>Patermarakis, G. ; Karayianni, H. ; Masavetas, K. ; Chandrinos, J.</creatorcontrib><description>The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al 3+ and O 2− transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O 2− anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59–5.22 g cm −3 in oxide|electrolyte interface with mean value ≈3.21–3.52 g cm −3 . The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al 3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-008-0745-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Original Paper ; Physical Chemistry</subject><ispartof>Journal of solid state electrochemistry, 2009-12, Vol.13 (12), p.1831-1847</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53</citedby><cites>FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Patermarakis, G.</creatorcontrib><creatorcontrib>Karayianni, H.</creatorcontrib><creatorcontrib>Masavetas, K.</creatorcontrib><creatorcontrib>Chandrinos, J.</creatorcontrib><title>Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al 3+ and O 2− transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O 2− anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59–5.22 g cm −3 in oxide|electrolyte interface with mean value ≈3.21–3.52 g cm −3 . The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al 3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UUtOxDAMrRBIwMAB2OUAFJL-EtghxE8aaTawrtLYnWamTUZJCvSkXIdMhzUL27Hj52f5JckVozeMUn7ro6cinY0XZVodJWesyPOYVeJ4fmepKIQ4Tc6931DKeMXoWfKz-taABNB4HSYC2genmzFoa4hUznpPQoekkc5pdKSXU_QwOm3W84cPKGGKQQYka2e_QkdsS3bW2dETaSxoRWQ_DtpI0up-8PdEdc4au7MBTeQZMLjpmmy1waCV36MH6fdYiAxabQ3GDD9t_7dVrEvS6XUX52EPJBYjx6DXTs4NgwXsL5KTVvYeL__iIvl4fnp_fE2Xq5e3x4dlqjIhQlpWbVEqkVV3DUNUNKcZa0pQXILIClUWHLKcVYKrOwGCQwNcAIe2AVRV05b5ImGHufOtHLb1zulBuqlmtN4rUx-UqWeLytRVxGQHjN_t74iu3tjRmbjmP6BfxFaY8w</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Patermarakis, G.</creator><creator>Karayianni, H.</creator><creator>Masavetas, K.</creator><creator>Chandrinos, J.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091201</creationdate><title>Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model</title><author>Patermarakis, G. ; Karayianni, H. ; Masavetas, K. ; Chandrinos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patermarakis, G.</creatorcontrib><creatorcontrib>Karayianni, H.</creatorcontrib><creatorcontrib>Masavetas, K.</creatorcontrib><creatorcontrib>Chandrinos, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patermarakis, G.</au><au>Karayianni, H.</au><au>Masavetas, K.</au><au>Chandrinos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>13</volume><issue>12</issue><spage>1831</spage><epage>1847</epage><pages>1831-1847</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al 3+ and O 2− transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O 2− anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59–5.22 g cm −3 in oxide|electrolyte interface with mean value ≈3.21–3.52 g cm −3 . The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al 3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10008-008-0745-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2009-12, Vol.13 (12), p.1831-1847
issn 1432-8488
1433-0768
language eng
recordid cdi_crossref_primary_10_1007_s10008_008_0745_6
source Springer Nature
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy Storage
Original Paper
Physical Chemistry
title Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20density%20distribution%20across%20the%20barrier%20layer%20during%20the%20steady%20state%20growth%20of%20porous%20anodic%20alumina%20films:%20chronopotentiometry,%20kinetics%20of%20mass%20and%20thickness%20evolution%20and%20a%20high%20field%20ionic%20migration%20model&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Patermarakis,%20G.&rft.date=2009-12-01&rft.volume=13&rft.issue=12&rft.spage=1831&rft.epage=1847&rft.pages=1831-1847&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-008-0745-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s10008_008_0745_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-56f45c8269b1eec03021b5dc7ad824c547d231687c98d87dbd78d7dfbdec6bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true