Loading…

Cathodic etching for fabrication of super-hydrophobic aluminum coating with micro/nano-hierarchical structure

A facile method for fabricating super-hydrophobic surfaces on the magnetron sputtering aluminum film by cathodic electrochemical etching followed by the modification of myristic acid was presented in this article. The morphologies and the compositions of the films were characterized by means of scan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry 2013-10, Vol.17 (10), p.2661-2669
Main Authors: Zhilei, Chen, Maobing, Shuai, Lida, Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile method for fabricating super-hydrophobic surfaces on the magnetron sputtering aluminum film by cathodic electrochemical etching followed by the modification of myristic acid was presented in this article. The morphologies and the compositions of the films were characterized by means of scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), respectively. The corrosion behavior of the super-hydrophobic film was evaluated by potentiodynamic polarization measurement, linear polarization measurement, and electrochemical impedance spectroscopy. After the treatment with cathodic electrochemical etching, the thin aluminum film remained unbroken and the bulk structure of the aluminum coating maintained a microcrystalline morphology while the surface of the coating presented a petal-shaped microstructure dotted with nano-sized floccules. Aluminum myristate was formed on the nano/microstructural surface of the coating when the sample was modified in melting myristic acid. The static water contact angle on the surface was larger than 165°, which demonstrated that a super-hydrophobic film was prepared on the magnetron sputtering aluminum coating. The corrosion resistance of the aluminum coating was enhanced remarkably because of the super-hydrophobic modification.
ISSN:1432-8488
1433-0768
DOI:10.1007/s10008-013-2141-0