Loading…
Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid
Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemica...
Saved in:
Published in: | Journal of solid state electrochemistry 2014-11, Vol.18 (11), p.2933-2945 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93 |
container_end_page | 2945 |
container_issue | 11 |
container_start_page | 2933 |
container_title | Journal of solid state electrochemistry |
container_volume | 18 |
creator | Palumbo, Gaetano Banaś, J. Bałkowiec, A. Mizera, J. Lelek-Borkowska, U. |
description | Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe
2
O
3
) and maghemite (γ-Fe
2
O
3
). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate. |
doi_str_mv | 10.1007/s10008-014-2430-2 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10008_014_2430_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10008_014_2430_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPMPGNaxk9hHVJWHVIlLOVuOH8RVmlR2gtS_xyGce9kd7e6MZgehRwpPFKB-TrmCIEA5KTgDUlyhFeWMEagrcf2HCyK4ELfoLqUDAK0rCiu033bOjHEwrTsGozucxsme8eDx2DpshhiHFIYeN67VP2GY4rwyOjZ5lkbnOhx67KM24xRD_419NwV7j2687pJ7-O9r9PW63W_eye7z7WPzsiOGlWIkuvTSWulFbSy4bJ0JkJw7I8BXpmKU87Kpee21tNpa72WToc4XXFrwkq0RXXRNdpmi8-oUw1HHs6Kg5ljUEovK2mqORRWZUyycdJoNu6gO-as-27xA-gV_t2c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><source>Springer Link</source><creator>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</creator><creatorcontrib>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</creatorcontrib><description>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe
2
O
3
) and maghemite (γ-Fe
2
O
3
). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-014-2430-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Original Paper ; Physical Chemistry</subject><ispartof>Journal of solid state electrochemistry, 2014-11, Vol.18 (11), p.2933-2945</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</citedby><cites>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Palumbo, Gaetano</creatorcontrib><creatorcontrib>Banaś, J.</creatorcontrib><creatorcontrib>Bałkowiec, A.</creatorcontrib><creatorcontrib>Mizera, J.</creatorcontrib><creatorcontrib>Lelek-Borkowska, U.</creatorcontrib><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe
2
O
3
) and maghemite (γ-Fe
2
O
3
). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPMPGNaxk9hHVJWHVIlLOVuOH8RVmlR2gtS_xyGce9kd7e6MZgehRwpPFKB-TrmCIEA5KTgDUlyhFeWMEagrcf2HCyK4ELfoLqUDAK0rCiu033bOjHEwrTsGozucxsme8eDx2DpshhiHFIYeN67VP2GY4rwyOjZ5lkbnOhx67KM24xRD_419NwV7j2687pJ7-O9r9PW63W_eye7z7WPzsiOGlWIkuvTSWulFbSy4bJ0JkJw7I8BXpmKU87Kpee21tNpa72WToc4XXFrwkq0RXXRNdpmi8-oUw1HHs6Kg5ljUEovK2mqORRWZUyycdJoNu6gO-as-27xA-gV_t2c1</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Palumbo, Gaetano</creator><creator>Banaś, J.</creator><creator>Bałkowiec, A.</creator><creator>Mizera, J.</creator><creator>Lelek-Borkowska, U.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><author>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palumbo, Gaetano</creatorcontrib><creatorcontrib>Banaś, J.</creatorcontrib><creatorcontrib>Bałkowiec, A.</creatorcontrib><creatorcontrib>Mizera, J.</creatorcontrib><creatorcontrib>Lelek-Borkowska, U.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palumbo, Gaetano</au><au>Banaś, J.</au><au>Bałkowiec, A.</au><au>Mizera, J.</au><au>Lelek-Borkowska, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>18</volume><issue>11</issue><spage>2933</spage><epage>2945</epage><pages>2933-2945</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe
2
O
3
) and maghemite (γ-Fe
2
O
3
). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-014-2430-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2014-11, Vol.18 (11), p.2933-2945 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10008_014_2430_2 |
source | Springer Link |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Energy Storage Original Paper Physical Chemistry |
title | Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20study%20of%20the%20corrosion%20behaviour%20of%20carbon%20steel%20in%20fracturing%20fluid&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Palumbo,%20Gaetano&rft.date=2014-11-01&rft.volume=18&rft.issue=11&rft.spage=2933&rft.epage=2945&rft.pages=2933-2945&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-014-2430-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10008_014_2430_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |