Loading…

Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid

Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry 2014-11, Vol.18 (11), p.2933-2945
Main Authors: Palumbo, Gaetano, Banaś, J., Bałkowiec, A., Mizera, J., Lelek-Borkowska, U.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93
cites cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93
container_end_page 2945
container_issue 11
container_start_page 2933
container_title Journal of solid state electrochemistry
container_volume 18
creator Palumbo, Gaetano
Banaś, J.
Bałkowiec, A.
Mizera, J.
Lelek-Borkowska, U.
description Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe 2 O 3 ) and maghemite (γ-Fe 2 O 3 ). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.
doi_str_mv 10.1007/s10008-014-2430-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10008_014_2430_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10008_014_2430_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPMPGNaxk9hHVJWHVIlLOVuOH8RVmlR2gtS_xyGce9kd7e6MZgehRwpPFKB-TrmCIEA5KTgDUlyhFeWMEagrcf2HCyK4ELfoLqUDAK0rCiu033bOjHEwrTsGozucxsme8eDx2DpshhiHFIYeN67VP2GY4rwyOjZ5lkbnOhx67KM24xRD_419NwV7j2687pJ7-O9r9PW63W_eye7z7WPzsiOGlWIkuvTSWulFbSy4bJ0JkJw7I8BXpmKU87Kpee21tNpa72WToc4XXFrwkq0RXXRNdpmi8-oUw1HHs6Kg5ljUEovK2mqORRWZUyycdJoNu6gO-as-27xA-gV_t2c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><source>Springer Link</source><creator>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</creator><creatorcontrib>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</creatorcontrib><description>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe 2 O 3 ) and maghemite (γ-Fe 2 O 3 ). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-014-2430-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Original Paper ; Physical Chemistry</subject><ispartof>Journal of solid state electrochemistry, 2014-11, Vol.18 (11), p.2933-2945</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</citedby><cites>FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Palumbo, Gaetano</creatorcontrib><creatorcontrib>Banaś, J.</creatorcontrib><creatorcontrib>Bałkowiec, A.</creatorcontrib><creatorcontrib>Mizera, J.</creatorcontrib><creatorcontrib>Lelek-Borkowska, U.</creatorcontrib><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe 2 O 3 ) and maghemite (γ-Fe 2 O 3 ). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPMPGNaxk9hHVJWHVIlLOVuOH8RVmlR2gtS_xyGce9kd7e6MZgehRwpPFKB-TrmCIEA5KTgDUlyhFeWMEagrcf2HCyK4ELfoLqUDAK0rCiu033bOjHEwrTsGozucxsme8eDx2DpshhiHFIYeN67VP2GY4rwyOjZ5lkbnOhx67KM24xRD_419NwV7j2687pJ7-O9r9PW63W_eye7z7WPzsiOGlWIkuvTSWulFbSy4bJ0JkJw7I8BXpmKU87Kpee21tNpa72WToc4XXFrwkq0RXXRNdpmi8-oUw1HHs6Kg5ljUEovK2mqORRWZUyycdJoNu6gO-as-27xA-gV_t2c1</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Palumbo, Gaetano</creator><creator>Banaś, J.</creator><creator>Bałkowiec, A.</creator><creator>Mizera, J.</creator><creator>Lelek-Borkowska, U.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</title><author>Palumbo, Gaetano ; Banaś, J. ; Bałkowiec, A. ; Mizera, J. ; Lelek-Borkowska, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palumbo, Gaetano</creatorcontrib><creatorcontrib>Banaś, J.</creatorcontrib><creatorcontrib>Bałkowiec, A.</creatorcontrib><creatorcontrib>Mizera, J.</creatorcontrib><creatorcontrib>Lelek-Borkowska, U.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palumbo, Gaetano</au><au>Banaś, J.</au><au>Bałkowiec, A.</au><au>Mizera, J.</au><au>Lelek-Borkowska, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>18</volume><issue>11</issue><spage>2933</spage><epage>2945</epage><pages>2933-2945</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe 2 O 3 ) and maghemite (γ-Fe 2 O 3 ). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-014-2430-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2014-11, Vol.18 (11), p.2933-2945
issn 1432-8488
1433-0768
language eng
recordid cdi_crossref_primary_10_1007_s10008_014_2430_2
source Springer Link
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy Storage
Original Paper
Physical Chemistry
title Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20study%20of%20the%20corrosion%20behaviour%20of%20carbon%20steel%20in%20fracturing%20fluid&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Palumbo,%20Gaetano&rft.date=2014-11-01&rft.volume=18&rft.issue=11&rft.spage=2933&rft.epage=2945&rft.pages=2933-2945&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-014-2430-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10008_014_2430_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a5f9dd9f87cd0e014380944ec80f6c631445b747fa9daddff9bfa9a44e49d0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true