Loading…

Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation

High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre a...

Full description

Saved in:
Bibliographic Details
Published in:Optical review (Tokyo, Japan) Japan), 2017-12, Vol.24 (6), p.741-756
Main Authors: Ueda, Yoshiaki, Koga, Takanori, Suetake, Noriaki, Uchino, Eiji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3
cites cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3
container_end_page 756
container_issue 6
container_start_page 741
container_title Optical review (Tokyo, Japan)
container_volume 24
creator Ueda, Yoshiaki
Koga, Takanori
Suetake, Noriaki
Uchino, Eiji
description High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.
doi_str_mv 10.1007/s10043-017-0376-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10043_017_0376_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10043_017_0376_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRxHH0AdzxAiiUlrZLM_EvmcSNrgmFy8ikhRGYxbj1xWWsC1duuJdczrmcD6FrRm8Ype1tKmfNCWUtobwVhJ2gBeN1T_qaV6c_PSWCUnqOLlLaUlo1vBcL9LUKY4j4Y698dp8qu-DxBPk9GDyoBAaX-y46r91OjViHaRc8-IyVV-MhuVQag0fnQUVsXNLRTc6rvw9ssS9ayBnIbOkmtQG8AQ_xZ-ElOrNqTHD1W5fo7eH-dfVE1i-Pz6u7NdG8qTPpy6f7tgNd68FYIaiwLQdRD0OtTacYbagFobRlXdcopjvbqIoZqNqmzIzmS8RmXx1DShGsLMkmFQ-SUXmkKGeKslCUR4qSFU01a9KRwgai3IZ9LNnSP6JvFut5Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><source>Springer Nature</source><creator>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</creator><creatorcontrib>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</creatorcontrib><description>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</description><identifier>ISSN: 1340-6000</identifier><identifier>EISSN: 1349-9432</identifier><identifier>DOI: 10.1007/s10043-017-0376-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Atomic ; Lasers ; Microwaves ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Optics ; Regular Paper ; RF and Optical Engineering</subject><ispartof>Optical review (Tokyo, Japan), 2017-12, Vol.24 (6), p.741-756</ispartof><rights>The Optical Society of Japan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</citedby><cites>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ueda, Yoshiaki</creatorcontrib><creatorcontrib>Koga, Takanori</creatorcontrib><creatorcontrib>Suetake, Noriaki</creatorcontrib><creatorcontrib>Uchino, Eiji</creatorcontrib><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><title>Optical review (Tokyo, Japan)</title><addtitle>Opt Rev</addtitle><description>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</description><subject>Atomic</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Regular Paper</subject><subject>RF and Optical Engineering</subject><issn>1340-6000</issn><issn>1349-9432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAUhYnRxHH0AdzxAiiUlrZLM_EvmcSNrgmFy8ikhRGYxbj1xWWsC1duuJdczrmcD6FrRm8Ype1tKmfNCWUtobwVhJ2gBeN1T_qaV6c_PSWCUnqOLlLaUlo1vBcL9LUKY4j4Y698dp8qu-DxBPk9GDyoBAaX-y46r91OjViHaRc8-IyVV-MhuVQag0fnQUVsXNLRTc6rvw9ssS9ayBnIbOkmtQG8AQ_xZ-ElOrNqTHD1W5fo7eH-dfVE1i-Pz6u7NdG8qTPpy6f7tgNd68FYIaiwLQdRD0OtTacYbagFobRlXdcopjvbqIoZqNqmzIzmS8RmXx1DShGsLMkmFQ-SUXmkKGeKslCUR4qSFU01a9KRwgai3IZ9LNnSP6JvFut5Dg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ueda, Yoshiaki</creator><creator>Koga, Takanori</creator><creator>Suetake, Noriaki</creator><creator>Uchino, Eiji</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><author>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Regular Paper</topic><topic>RF and Optical Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Yoshiaki</creatorcontrib><creatorcontrib>Koga, Takanori</creatorcontrib><creatorcontrib>Suetake, Noriaki</creatorcontrib><creatorcontrib>Uchino, Eiji</creatorcontrib><collection>CrossRef</collection><jtitle>Optical review (Tokyo, Japan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Yoshiaki</au><au>Koga, Takanori</au><au>Suetake, Noriaki</au><au>Uchino, Eiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</atitle><jtitle>Optical review (Tokyo, Japan)</jtitle><stitle>Opt Rev</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>741</spage><epage>756</epage><pages>741-756</pages><issn>1340-6000</issn><eissn>1349-9432</eissn><abstract>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10043-017-0376-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1340-6000
ispartof Optical review (Tokyo, Japan), 2017-12, Vol.24 (6), p.741-756
issn 1340-6000
1349-9432
language eng
recordid cdi_crossref_primary_10_1007_s10043_017_0376_1
source Springer Nature
subjects Atomic
Lasers
Microwaves
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quantum Optics
Regular Paper
RF and Optical Engineering
title Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20quantization%20method%20based%20on%20principal%20component%20analysis%20and%20linear%20discriminant%20analysis%20for%20palette-based%20image%20generation&rft.jtitle=Optical%20review%20(Tokyo,%20Japan)&rft.au=Ueda,%20Yoshiaki&rft.date=2017-12-01&rft.volume=24&rft.issue=6&rft.spage=741&rft.epage=756&rft.pages=741-756&rft.issn=1340-6000&rft.eissn=1349-9432&rft_id=info:doi/10.1007/s10043-017-0376-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s10043_017_0376_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true