Loading…
Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation
High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre a...
Saved in:
Published in: | Optical review (Tokyo, Japan) Japan), 2017-12, Vol.24 (6), p.741-756 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3 |
container_end_page | 756 |
container_issue | 6 |
container_start_page | 741 |
container_title | Optical review (Tokyo, Japan) |
container_volume | 24 |
creator | Ueda, Yoshiaki Koga, Takanori Suetake, Noriaki Uchino, Eiji |
description | High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images. |
doi_str_mv | 10.1007/s10043-017-0376-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10043_017_0376_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10043_017_0376_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRxHH0AdzxAiiUlrZLM_EvmcSNrgmFy8ikhRGYxbj1xWWsC1duuJdczrmcD6FrRm8Ype1tKmfNCWUtobwVhJ2gBeN1T_qaV6c_PSWCUnqOLlLaUlo1vBcL9LUKY4j4Y698dp8qu-DxBPk9GDyoBAaX-y46r91OjViHaRc8-IyVV-MhuVQag0fnQUVsXNLRTc6rvw9ssS9ayBnIbOkmtQG8AQ_xZ-ElOrNqTHD1W5fo7eH-dfVE1i-Pz6u7NdG8qTPpy6f7tgNd68FYIaiwLQdRD0OtTacYbagFobRlXdcopjvbqIoZqNqmzIzmS8RmXx1DShGsLMkmFQ-SUXmkKGeKslCUR4qSFU01a9KRwgai3IZ9LNnSP6JvFut5Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><source>Springer Nature</source><creator>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</creator><creatorcontrib>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</creatorcontrib><description>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</description><identifier>ISSN: 1340-6000</identifier><identifier>EISSN: 1349-9432</identifier><identifier>DOI: 10.1007/s10043-017-0376-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Atomic ; Lasers ; Microwaves ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Optics ; Regular Paper ; RF and Optical Engineering</subject><ispartof>Optical review (Tokyo, Japan), 2017-12, Vol.24 (6), p.741-756</ispartof><rights>The Optical Society of Japan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</citedby><cites>FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ueda, Yoshiaki</creatorcontrib><creatorcontrib>Koga, Takanori</creatorcontrib><creatorcontrib>Suetake, Noriaki</creatorcontrib><creatorcontrib>Uchino, Eiji</creatorcontrib><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><title>Optical review (Tokyo, Japan)</title><addtitle>Opt Rev</addtitle><description>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</description><subject>Atomic</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Regular Paper</subject><subject>RF and Optical Engineering</subject><issn>1340-6000</issn><issn>1349-9432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAUhYnRxHH0AdzxAiiUlrZLM_EvmcSNrgmFy8ikhRGYxbj1xWWsC1duuJdczrmcD6FrRm8Ype1tKmfNCWUtobwVhJ2gBeN1T_qaV6c_PSWCUnqOLlLaUlo1vBcL9LUKY4j4Y698dp8qu-DxBPk9GDyoBAaX-y46r91OjViHaRc8-IyVV-MhuVQag0fnQUVsXNLRTc6rvw9ssS9ayBnIbOkmtQG8AQ_xZ-ElOrNqTHD1W5fo7eH-dfVE1i-Pz6u7NdG8qTPpy6f7tgNd68FYIaiwLQdRD0OtTacYbagFobRlXdcopjvbqIoZqNqmzIzmS8RmXx1DShGsLMkmFQ-SUXmkKGeKslCUR4qSFU01a9KRwgai3IZ9LNnSP6JvFut5Dg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ueda, Yoshiaki</creator><creator>Koga, Takanori</creator><creator>Suetake, Noriaki</creator><creator>Uchino, Eiji</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</title><author>Ueda, Yoshiaki ; Koga, Takanori ; Suetake, Noriaki ; Uchino, Eiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Regular Paper</topic><topic>RF and Optical Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Yoshiaki</creatorcontrib><creatorcontrib>Koga, Takanori</creatorcontrib><creatorcontrib>Suetake, Noriaki</creatorcontrib><creatorcontrib>Uchino, Eiji</creatorcontrib><collection>CrossRef</collection><jtitle>Optical review (Tokyo, Japan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Yoshiaki</au><au>Koga, Takanori</au><au>Suetake, Noriaki</au><au>Uchino, Eiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation</atitle><jtitle>Optical review (Tokyo, Japan)</jtitle><stitle>Opt Rev</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>741</spage><epage>756</epage><pages>741-756</pages><issn>1340-6000</issn><eissn>1349-9432</eissn><abstract>High performance of color quantization processing is very important for obtaining limited-color images with good quality. The median cut algorithm (MCA) is a typical color quantization method. Its computational cost is low owing to its simple algorithm, but the quality of output images is mediocre at best. In this paper, we describe a modification of MCA. In our method, we use a combination of principal component analysis (PCA) and linear discriminant analysis (LDA) to accomplish effective partitioning of color space. Concretely, PCA and LDA are used to calculate partitioning planes and their positions, respectively. We verify the effectiveness of our method through experiments using 24-bit full-color natural images.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10043-017-0376-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1340-6000 |
ispartof | Optical review (Tokyo, Japan), 2017-12, Vol.24 (6), p.741-756 |
issn | 1340-6000 1349-9432 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10043_017_0376_1 |
source | Springer Nature |
subjects | Atomic Lasers Microwaves Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Quantum Optics Regular Paper RF and Optical Engineering |
title | Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20quantization%20method%20based%20on%20principal%20component%20analysis%20and%20linear%20discriminant%20analysis%20for%20palette-based%20image%20generation&rft.jtitle=Optical%20review%20(Tokyo,%20Japan)&rft.au=Ueda,%20Yoshiaki&rft.date=2017-12-01&rft.volume=24&rft.issue=6&rft.spage=741&rft.epage=756&rft.pages=741-756&rft.issn=1340-6000&rft.eissn=1349-9432&rft_id=info:doi/10.1007/s10043-017-0376-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s10043_017_0376_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-9002978ec4cbdf6606f73e64bb4cd8a1050fe6acf1885a1c8f5a21de275105dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |