Loading…

Si-microring resonator with sidewall nanograting structures for high-Q resonance modes

A nanograting microring resonator is proposed for achieving concentric mode field profiles as the effect of guided-mode resonance. Based on a numerical simulation of the 2D finite-difference time-domain method, we clarified that the microring resonator with a combination of nanograting microring and...

Full description

Saved in:
Bibliographic Details
Published in:Optical review (Tokyo, Japan) Japan), 2023-04, Vol.30 (2), p.238-245
Main Authors: Igarashi, Anh, Murooka, Koya, Ohtera, Yasuo, Yamada, Hirohito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3
cites cdi_FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3
container_end_page 245
container_issue 2
container_start_page 238
container_title Optical review (Tokyo, Japan)
container_volume 30
creator Igarashi, Anh
Murooka, Koya
Ohtera, Yasuo
Yamada, Hirohito
description A nanograting microring resonator is proposed for achieving concentric mode field profiles as the effect of guided-mode resonance. Based on a numerical simulation of the 2D finite-difference time-domain method, we clarified that the microring resonator with a combination of nanograting microring and sidewall blocks could generate two operating modes. The first is the optical whispering gallery mode, by which the light was in resonance inside the microring by total internal reflection and traveled in a circle around the microring. The second mode is guided-mode resonance, by which the light scattering from the grating structures is in resonance to create concentric magnetic-field distributions. The characteristics of resonance modes of the mode numbers, mode distribution, and Q factors are analyzed at the changes of the microring radius and the nanograting structures. A design of a nanograting bus waveguide with the same grating period as the nanograting microring is verified to achieve a high efficiency of the coupling ratio.
doi_str_mv 10.1007/s10043-023-00793-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10043_023_00793_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10043_023_00793_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6zyA4axncR4iSpeUiWEeGwtxxknrtqksh1V_D3uY81i7szintHMJeSWwR0DkPcxayko8FwgVdYzMmOiVFSVgp8fZqA1AFySqxhXALwSqp6Rn09PN96GMfihKwLGcTBpDMXOp76IvsWdWa-LwQxjF0zae2IKk01TthYuG3vf9fTjRA4Wi83YYrwmF86sI96c-px8Pz99LV7p8v3lbfG4pJYrlmhpbQM1NlLV0jrr0GDLWtvU0jyU3ApkhvFGtmgsSHAolURZcdO4xrlKGTEn_Lg3fxBjQKe3wW9M-NUM9D4ZfUxG52T0IRkNGRJHKG73X2PQq3EKQ77zP-oPlfVqHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si-microring resonator with sidewall nanograting structures for high-Q resonance modes</title><source>Springer Link</source><creator>Igarashi, Anh ; Murooka, Koya ; Ohtera, Yasuo ; Yamada, Hirohito</creator><creatorcontrib>Igarashi, Anh ; Murooka, Koya ; Ohtera, Yasuo ; Yamada, Hirohito</creatorcontrib><description>A nanograting microring resonator is proposed for achieving concentric mode field profiles as the effect of guided-mode resonance. Based on a numerical simulation of the 2D finite-difference time-domain method, we clarified that the microring resonator with a combination of nanograting microring and sidewall blocks could generate two operating modes. The first is the optical whispering gallery mode, by which the light was in resonance inside the microring by total internal reflection and traveled in a circle around the microring. The second mode is guided-mode resonance, by which the light scattering from the grating structures is in resonance to create concentric magnetic-field distributions. The characteristics of resonance modes of the mode numbers, mode distribution, and Q factors are analyzed at the changes of the microring radius and the nanograting structures. A design of a nanograting bus waveguide with the same grating period as the nanograting microring is verified to achieve a high efficiency of the coupling ratio.</description><identifier>ISSN: 1340-6000</identifier><identifier>EISSN: 1349-9432</identifier><identifier>DOI: 10.1007/s10043-023-00793-0</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Atomic ; Japan ; Lasers ; Microwaves ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Optics ; RF and Optical Engineering ; Sapporo ; Special Section: Regular Paper ; The 13th International Conference on Optics-Photonics Design &amp; Fabrication (ODF’22)</subject><ispartof>Optical review (Tokyo, Japan), 2023-04, Vol.30 (2), p.238-245</ispartof><rights>The Optical Society of Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3</citedby><cites>FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Igarashi, Anh</creatorcontrib><creatorcontrib>Murooka, Koya</creatorcontrib><creatorcontrib>Ohtera, Yasuo</creatorcontrib><creatorcontrib>Yamada, Hirohito</creatorcontrib><title>Si-microring resonator with sidewall nanograting structures for high-Q resonance modes</title><title>Optical review (Tokyo, Japan)</title><addtitle>Opt Rev</addtitle><description>A nanograting microring resonator is proposed for achieving concentric mode field profiles as the effect of guided-mode resonance. Based on a numerical simulation of the 2D finite-difference time-domain method, we clarified that the microring resonator with a combination of nanograting microring and sidewall blocks could generate two operating modes. The first is the optical whispering gallery mode, by which the light was in resonance inside the microring by total internal reflection and traveled in a circle around the microring. The second mode is guided-mode resonance, by which the light scattering from the grating structures is in resonance to create concentric magnetic-field distributions. The characteristics of resonance modes of the mode numbers, mode distribution, and Q factors are analyzed at the changes of the microring radius and the nanograting structures. A design of a nanograting bus waveguide with the same grating period as the nanograting microring is verified to achieve a high efficiency of the coupling ratio.</description><subject>Atomic</subject><subject>Japan</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>RF and Optical Engineering</subject><subject>Sapporo</subject><subject>Special Section: Regular Paper</subject><subject>The 13th International Conference on Optics-Photonics Design &amp; Fabrication (ODF’22)</subject><issn>1340-6000</issn><issn>1349-9432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6zyA4axncR4iSpeUiWEeGwtxxknrtqksh1V_D3uY81i7szintHMJeSWwR0DkPcxayko8FwgVdYzMmOiVFSVgp8fZqA1AFySqxhXALwSqp6Rn09PN96GMfihKwLGcTBpDMXOp76IvsWdWa-LwQxjF0zae2IKk01TthYuG3vf9fTjRA4Wi83YYrwmF86sI96c-px8Pz99LV7p8v3lbfG4pJYrlmhpbQM1NlLV0jrr0GDLWtvU0jyU3ApkhvFGtmgsSHAolURZcdO4xrlKGTEn_Lg3fxBjQKe3wW9M-NUM9D4ZfUxG52T0IRkNGRJHKG73X2PQq3EKQ77zP-oPlfVqHA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Igarashi, Anh</creator><creator>Murooka, Koya</creator><creator>Ohtera, Yasuo</creator><creator>Yamada, Hirohito</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Si-microring resonator with sidewall nanograting structures for high-Q resonance modes</title><author>Igarashi, Anh ; Murooka, Koya ; Ohtera, Yasuo ; Yamada, Hirohito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic</topic><topic>Japan</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>RF and Optical Engineering</topic><topic>Sapporo</topic><topic>Special Section: Regular Paper</topic><topic>The 13th International Conference on Optics-Photonics Design &amp; Fabrication (ODF’22)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igarashi, Anh</creatorcontrib><creatorcontrib>Murooka, Koya</creatorcontrib><creatorcontrib>Ohtera, Yasuo</creatorcontrib><creatorcontrib>Yamada, Hirohito</creatorcontrib><collection>CrossRef</collection><jtitle>Optical review (Tokyo, Japan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igarashi, Anh</au><au>Murooka, Koya</au><au>Ohtera, Yasuo</au><au>Yamada, Hirohito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si-microring resonator with sidewall nanograting structures for high-Q resonance modes</atitle><jtitle>Optical review (Tokyo, Japan)</jtitle><stitle>Opt Rev</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>238</spage><epage>245</epage><pages>238-245</pages><issn>1340-6000</issn><eissn>1349-9432</eissn><abstract>A nanograting microring resonator is proposed for achieving concentric mode field profiles as the effect of guided-mode resonance. Based on a numerical simulation of the 2D finite-difference time-domain method, we clarified that the microring resonator with a combination of nanograting microring and sidewall blocks could generate two operating modes. The first is the optical whispering gallery mode, by which the light was in resonance inside the microring by total internal reflection and traveled in a circle around the microring. The second mode is guided-mode resonance, by which the light scattering from the grating structures is in resonance to create concentric magnetic-field distributions. The characteristics of resonance modes of the mode numbers, mode distribution, and Q factors are analyzed at the changes of the microring radius and the nanograting structures. A design of a nanograting bus waveguide with the same grating period as the nanograting microring is verified to achieve a high efficiency of the coupling ratio.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10043-023-00793-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1340-6000
ispartof Optical review (Tokyo, Japan), 2023-04, Vol.30 (2), p.238-245
issn 1340-6000
1349-9432
language eng
recordid cdi_crossref_primary_10_1007_s10043_023_00793_0
source Springer Link
subjects Atomic
Japan
Lasers
Microwaves
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quantum Optics
RF and Optical Engineering
Sapporo
Special Section: Regular Paper
The 13th International Conference on Optics-Photonics Design & Fabrication (ODF’22)
title Si-microring resonator with sidewall nanograting structures for high-Q resonance modes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si-microring%20resonator%20with%20sidewall%20nanograting%20structures%20for%20high-Q%20resonance%20modes&rft.jtitle=Optical%20review%20(Tokyo,%20Japan)&rft.au=Igarashi,%20Anh&rft.date=2023-04-01&rft.volume=30&rft.issue=2&rft.spage=238&rft.epage=245&rft.pages=238-245&rft.issn=1340-6000&rft.eissn=1349-9432&rft_id=info:doi/10.1007/s10043-023-00793-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s10043_023_00793_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4ccb06eb7967cfcfeaed1dcb67a842c3e1a12b7deac070fe797e752abfbff59a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true