Loading…
Linear boundary discriminant analysis based on QR decomposition
Linear boundary discriminant analysis (LBDA) shows good feature extraction performance in the classification problem. However, LBDA suffers from small sample size (SSS) problem and the computation time of it increases exponentially for datasets that are not sufficiently large compared with the numbe...
Saved in:
Published in: | Pattern analysis and applications : PAA 2014-02, Vol.17 (1), p.105-112 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear boundary discriminant analysis (LBDA) shows good feature extraction performance in the classification problem. However, LBDA suffers from small sample size (SSS) problem and the computation time of it increases exponentially for datasets that are not sufficiently large compared with the number of features. To release these problems, we reformulate LBDA using QR decomposition, and this results in both reducing computation time and resolving SSS problem while classification performance is maintained. |
---|---|
ISSN: | 1433-7541 1433-755X |
DOI: | 10.1007/s10044-012-0285-7 |