Loading…

ACYCLIC DIENE METATHESIS POLYMERIZATION OF TAILOR-MADE MONOMERS TOWARDS SEQUENCE-REGULATED VINYL COPOLYMERS

Acyclic diene metathesis polymerization (ADMET) enables convenient transfer of sequential information of the designed monomers to the corresponding sequence-regulated copolymers. In this study, two structurally symmetric monomers, M1 and M2, were synthesized via atom transfer radical addition (ATRA)...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of polymer science 2013-02, Vol.31 (2), p.355-362
Main Authors: Li, Zi-long, Li, Lei, Du, Fu-sheng, Li, Zi-chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acyclic diene metathesis polymerization (ADMET) enables convenient transfer of sequential information of the designed monomers to the corresponding sequence-regulated copolymers. In this study, two structurally symmetric monomers, M1 and M2, were synthesized via atom transfer radical addition (ATRA) of diethyl meso-2,5- dibromohexanedioate with 1,5-hexadiene and 1,7-octadiene, respectively. Thus, sequenced segment of VB-EA-EA-VB (VB and EA represent vinyl bromide and ethyl acrylate, respectively) was incorporated into the ADMET diene monomers. ADMET polymerization of these two monomers with Grubbs first generation catalyst (Grubbs-I) was performed in CH2C12 at 40℃ for 5 days under nitrogen purge. Effects of catalyst amount, monomer concentration and methanol precipitation on the Mp and PDI of polymers were investigated by GPC, and the structures of the formed polymers were characterized by NMR. Our results indicate that using 3.0 mol% of Grubbs-I to monomer can afford polymers with high Mp. Moreover, selective precipitation in methanol enables complete removal of low molecular weight components from the crude products. Meanwhile, M2 exhibits higher ADMET polymerization reactivity than M1 due to its capability of suppressing negative neighboring group effect.
ISSN:0256-7679
1439-6203
DOI:10.1007/s10118-013-1227-6