Loading…
Componentwise Complementary Cycles in Multipartite Tournaments
The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Le...
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2012, Vol.28 (1), p.201-208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-012-0135-9 |