Loading…
Componentwise Complementary Cycles in Multipartite Tournaments
The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Le...
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2012, Vol.28 (1), p.201-208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c266t-bba8a9609bd36ddb365b8149510233bc4ae260c35ca1e750d072a8d9ea7906983 |
container_end_page | 208 |
container_issue | 1 |
container_start_page | 201 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 28 |
creator | He, Zhi-hong Li, Guo-jun Zhou, Xue-qin |
description | The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles. |
doi_str_mv | 10.1007/s10255-012-0135-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10255_012_0135_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40713987</cqvip_id><sourcerecordid>10_1007_s10255_012_0135_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-bba8a9609bd36ddb365b8149510233bc4ae260c35ca1e750d072a8d9ea7906983</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMouFZ_gG_rD4jOJM3tRZDFG1R8qc8hu5vWLXupyRbpvzdri48-DMOBc2YOHyHXCLcIoO4iAhOCArI0XFBzQjKUqCk3nJ2SDFBqaqTi5-Qixg0AKi5VRu6LodsOve_H7yb6fFKt75J0YZ8X-6r1MW_6_G3Xjs3WhbEZfb4cdqF3kylekrOVa6O_Ou4Z-Xh6XBYvdPH-_Fo8LGjFpBxpWTrtjART1lzWdcmlKDXOjUitOS-rufNMQsVF5dArATUo5nRtvFMGpNF8RvBwtwpDjMGv7DY0XepoEewEwB4A2ATATgCsSRl2yMTk7dc-2M1v8Tb-G7o5Pvoc-vVXyv19moNCbrTiP4yzabQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Componentwise Complementary Cycles in Multipartite Tournaments</title><source>Springer Link</source><creator>He, Zhi-hong ; Li, Guo-jun ; Zhou, Xue-qin</creator><creatorcontrib>He, Zhi-hong ; Li, Guo-jun ; Zhou, Xue-qin</creatorcontrib><description>The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles.</description><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-012-0135-9</identifier><language>eng</language><publisher>Heildeberg: Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; 互补 ; 循环 ; 有向图 ; 比赛 ; 非周期性</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2012, Vol.28 (1), p.201-208</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-bba8a9609bd36ddb365b8149510233bc4ae260c35ca1e750d072a8d9ea7906983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Zhi-hong</creatorcontrib><creatorcontrib>Li, Guo-jun</creatorcontrib><creatorcontrib>Zhou, Xue-qin</creatorcontrib><title>Componentwise Complementary Cycles in Multipartite Tournaments</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>互补</subject><subject>循环</subject><subject>有向图</subject><subject>比赛</subject><subject>非周期性</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMouFZ_gG_rD4jOJM3tRZDFG1R8qc8hu5vWLXupyRbpvzdri48-DMOBc2YOHyHXCLcIoO4iAhOCArI0XFBzQjKUqCk3nJ2SDFBqaqTi5-Qixg0AKi5VRu6LodsOve_H7yb6fFKt75J0YZ8X-6r1MW_6_G3Xjs3WhbEZfb4cdqF3kylekrOVa6O_Ou4Z-Xh6XBYvdPH-_Fo8LGjFpBxpWTrtjART1lzWdcmlKDXOjUitOS-rufNMQsVF5dArATUo5nRtvFMGpNF8RvBwtwpDjMGv7DY0XepoEewEwB4A2ATATgCsSRl2yMTk7dc-2M1v8Tb-G7o5Pvoc-vVXyv19moNCbrTiP4yzabQ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>He, Zhi-hong</creator><creator>Li, Guo-jun</creator><creator>Zhou, Xue-qin</creator><general>Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Componentwise Complementary Cycles in Multipartite Tournaments</title><author>He, Zhi-hong ; Li, Guo-jun ; Zhou, Xue-qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-bba8a9609bd36ddb365b8149510233bc4ae260c35ca1e750d072a8d9ea7906983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>互补</topic><topic>循环</topic><topic>有向图</topic><topic>比赛</topic><topic>非周期性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhi-hong</creatorcontrib><creatorcontrib>Li, Guo-jun</creatorcontrib><creatorcontrib>Zhou, Xue-qin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhi-hong</au><au>Li, Guo-jun</au><au>Zhou, Xue-qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Componentwise Complementary Cycles in Multipartite Tournaments</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2012</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>201</spage><epage>208</epage><pages>201-208</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles.</abstract><cop>Heildeberg</cop><pub>Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10255-012-0135-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2012, Vol.28 (1), p.201-208 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10255_012_0135_9 |
source | Springer Link |
subjects | Applications of Mathematics Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical 互补 循环 有向图 比赛 非周期性 |
title | Componentwise Complementary Cycles in Multipartite Tournaments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Componentwise%20Complementary%20Cycles%20in%20Multipartite%20Tournaments&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=He,%20Zhi-hong&rft.date=2012&rft.volume=28&rft.issue=1&rft.spage=201&rft.epage=208&rft.pages=201-208&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-012-0135-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s10255_012_0135_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-bba8a9609bd36ddb365b8149510233bc4ae260c35ca1e750d072a8d9ea7906983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=40713987&rfr_iscdi=true |