Loading…

Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids

This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then...

Full description

Saved in:
Bibliographic Details
Published in:Acta Mathematicae Applicatae Sinica 2014-10, Vol.30 (4), p.1113-1120
Main Authors: Huang, Jin-yang, Shi, Xiao-ding, Wang, Xiao-ping, Zhang, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3
cites cdi_FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3
container_end_page 1120
container_issue 4
container_start_page 1113
container_title Acta Mathematicae Applicatae Sinica
container_volume 30
creator Huang, Jin-yang
Shi, Xiao-ding
Wang, Xiao-ping
Zhang, Bing
description This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞.
doi_str_mv 10.1007/s10255-014-0430-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10255_014_0430_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664798063</cqvip_id><sourcerecordid>10_1007_s10255_014_0430_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF1wH71JZjLJshSrQkHBR5chk8nUlOmkJjNC_70pFZeuLvdx7jl8CF1TuKUA1V2iwMqSAC0IFByIPEETKqgkXHF2iiZAhSRKVPwcXaS0AaAVF9UErWZpv90NYfAWvw6m9p0f9ji0-MVFH5rDNHTj4EOP2xDxPGx30aXk687hD59sGBP-Nj1uXMQrY7qEF93om3SJztrcuavfOkXvi_u3-SNZPj88zWdLYjktB2JZ3UBpa8EKKUtmGZWgVE2NEIWFBjgVTgohGWvAKFPWpZCuErXJWyGV41NEj39tDClF1-pd9FsT95qCPpDRRzI6k9EHMlpmDTtqUr7t1y7qTRhjn2P-K7r5NfoM_for6_6cctZKSRCc_wCBjXHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids</title><source>Springer Link</source><creator>Huang, Jin-yang ; Shi, Xiao-ding ; Wang, Xiao-ping ; Zhang, Bing</creator><creatorcontrib>Huang, Jin-yang ; Shi, Xiao-ding ; Wang, Xiao-ping ; Zhang, Bing</creatorcontrib><description>This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞.</description><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-014-0430-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; 初始密度 ; 可压缩 ; 周期解 ; 平均密度 ; 模型系统 ; 流体 ; 渐近稳定性 ; 粘性</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2014-10, Vol.30 (4), p.1113-1120</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3</citedby><cites>FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Jin-yang</creatorcontrib><creatorcontrib>Shi, Xiao-ding</creatorcontrib><creatorcontrib>Wang, Xiao-ping</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>初始密度</subject><subject>可压缩</subject><subject>周期解</subject><subject>平均密度</subject><subject>模型系统</subject><subject>流体</subject><subject>渐近稳定性</subject><subject>粘性</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF1wH71JZjLJshSrQkHBR5chk8nUlOmkJjNC_70pFZeuLvdx7jl8CF1TuKUA1V2iwMqSAC0IFByIPEETKqgkXHF2iiZAhSRKVPwcXaS0AaAVF9UErWZpv90NYfAWvw6m9p0f9ji0-MVFH5rDNHTj4EOP2xDxPGx30aXk687hD59sGBP-Nj1uXMQrY7qEF93om3SJztrcuavfOkXvi_u3-SNZPj88zWdLYjktB2JZ3UBpa8EKKUtmGZWgVE2NEIWFBjgVTgohGWvAKFPWpZCuErXJWyGV41NEj39tDClF1-pd9FsT95qCPpDRRzI6k9EHMlpmDTtqUr7t1y7qTRhjn2P-K7r5NfoM_for6_6cctZKSRCc_wCBjXHM</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Huang, Jin-yang</creator><creator>Shi, Xiao-ding</creator><creator>Wang, Xiao-ping</creator><creator>Zhang, Bing</creator><general>Springer Berlin Heidelberg</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141001</creationdate><title>Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids</title><author>Huang, Jin-yang ; Shi, Xiao-ding ; Wang, Xiao-ping ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>初始密度</topic><topic>可压缩</topic><topic>周期解</topic><topic>平均密度</topic><topic>模型系统</topic><topic>流体</topic><topic>渐近稳定性</topic><topic>粘性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jin-yang</creatorcontrib><creatorcontrib>Shi, Xiao-ding</creatorcontrib><creatorcontrib>Wang, Xiao-ping</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jin-yang</au><au>Shi, Xiao-ding</au><au>Wang, Xiao-ping</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>30</volume><issue>4</issue><spage>1113</spage><epage>1120</epage><pages>1113-1120</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-014-0430-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2014-10, Vol.30 (4), p.1113-1120
issn 0168-9673
1618-3932
language eng
recordid cdi_crossref_primary_10_1007_s10255_014_0430_8
source Springer Link
subjects Applications of Mathematics
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
初始密度
可压缩
周期解
平均密度
模型系统
流体
渐近稳定性
粘性
title Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Stability%20of%20Periodic%20Solution%20for%20Compressible%20Viscous%20van%20der%20Waals%20Fluids&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Huang,%20Jin-yang&rft.date=2014-10-01&rft.volume=30&rft.issue=4&rft.spage=1113&rft.epage=1120&rft.pages=1113-1120&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-014-0430-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s10255_014_0430_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-c2bd05cb6248852c218099b1a664c0d0316e866822d0a9a5b568e76ba4c0689e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=664798063&rfr_iscdi=true