Loading…
Integration of a Nonlinear Vibration Absorber and Levitation Magnetoelectric Energy Harvester for Whole-Spacecraft Systems
This paper presents a new device integrating a nonlinear vibration absorber with a levitation magnetoelectric energy harvester for whole-spacecraft systems. This device effectively reduces vibration and has a stronger energy harvesting capability than the existing systems. It harvests energy from a...
Saved in:
Published in: | Acta mechanica solida Sinica 2019-06, Vol.32 (3), p.298-309 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new device integrating a nonlinear vibration absorber with a levitation magnetoelectric energy harvester for whole-spacecraft systems. This device effectively reduces vibration and has a stronger energy harvesting capability than the existing systems. It harvests energy from a wide frequency range and has a high output voltage. The harvested energy is determined by magnetic field strength, excitation frequency, and resistive load. The change in the magnetic field strength has the least impact on the output voltage. The vibration reduction effects and harvested energy of the system are analyzed with an approximate analytical method that combines the harmonic balance approach and the pseudo-arclength continuation algorithm. The results of the Runge–Kutta method are nearly consistent with those of the approximate analytical method. Moreover, the effects of the excitation frequency, resistive load, and parameters of the nonlinear energy sink on the system vibration response and energy harvesting are analyzed. |
---|---|
ISSN: | 0894-9166 1860-2134 |
DOI: | 10.1007/s10338-019-00081-y |