Loading…
Noncommutative Blowups of Elliptic Algebras
We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element ∈ T 1 , T / g T is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective div...
Saved in:
Published in: | Algebras and representation theory 2015-04, Vol.18 (2), p.491-529 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3 |
container_end_page | 529 |
container_issue | 2 |
container_start_page | 491 |
container_title | Algebras and representation theory |
container_volume | 18 |
creator | Rogalski, D. Sierra, S. J. Stafford, J. T. |
description | We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let
T
be an elliptic algebra (meaning that, for some central element ∈
T
1
,
T
/
g
T
is a twisted homogeneous coordinate ring of an elliptic curve
E
at an infinite order automorphism). Given an effective divisor
d
on
E
whose degree is not too big, we construct a blowup
T
(
d
) of
T
at
d
and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of
T
(
d
) is quite rigid. Our results generalise those of the first author in Rogalski (Advances Math.
226
, 1433–1473,
2011
). In the companion paper Rogalski et al. (
2013
), we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra. |
doi_str_mv | 10.1007/s10468-014-9506-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10468_014_9506_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10468_014_9506_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3</originalsourceid><addsrcrecordid>eNp9j71OwzAYRS0EEqXwAGzZkcH_P2OpSkGqYAGJzXIcu0qVxJWdgHh7XIWZ6X7DPZ_uAeAWo3uMkHzIGDGhIMIMao4ElGdggbkkUCOpz8tNlYCa0M9LcJXzASGkhcILcPcaBxf7fhrt2H756rGL39MxVzFUm65rj2PrqlW393Wy-RpcBNtlf_OXS_DxtHlfP8Pd2_ZlvdpBR7kaYcO5dJhipqXFQTfSIx9qaxkT2ClaK6GkaISWTjHrOCe1LS0aCNFe6tDQJcDzX5dizskHc0xtb9OPwcicbM1sa4qtOdkaWRgyM7l0h71P5hCnNJSZ_0C_A49XlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noncommutative Blowups of Elliptic Algebras</title><source>Springer Nature</source><creator>Rogalski, D. ; Sierra, S. J. ; Stafford, J. T.</creator><creatorcontrib>Rogalski, D. ; Sierra, S. J. ; Stafford, J. T.</creatorcontrib><description>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let
T
be an elliptic algebra (meaning that, for some central element ∈
T
1
,
T
/
g
T
is a twisted homogeneous coordinate ring of an elliptic curve
E
at an infinite order automorphism). Given an effective divisor
d
on
E
whose degree is not too big, we construct a blowup
T
(
d
) of
T
at
d
and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of
T
(
d
) is quite rigid. Our results generalise those of the first author in Rogalski (Advances Math.
226
, 1433–1473,
2011
). In the companion paper Rogalski et al. (
2013
), we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-014-9506-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Associative Rings and Algebras ; Commutative Rings and Algebras ; Mathematics ; Mathematics and Statistics ; Non-associative Rings and Algebras</subject><ispartof>Algebras and representation theory, 2015-04, Vol.18 (2), p.491-529</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3</citedby><cites>FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rogalski, D.</creatorcontrib><creatorcontrib>Sierra, S. J.</creatorcontrib><creatorcontrib>Stafford, J. T.</creatorcontrib><title>Noncommutative Blowups of Elliptic Algebras</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let
T
be an elliptic algebra (meaning that, for some central element ∈
T
1
,
T
/
g
T
is a twisted homogeneous coordinate ring of an elliptic curve
E
at an infinite order automorphism). Given an effective divisor
d
on
E
whose degree is not too big, we construct a blowup
T
(
d
) of
T
at
d
and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of
T
(
d
) is quite rigid. Our results generalise those of the first author in Rogalski (Advances Math.
226
, 1433–1473,
2011
). In the companion paper Rogalski et al. (
2013
), we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</description><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Non-associative Rings and Algebras</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAYRS0EEqXwAGzZkcH_P2OpSkGqYAGJzXIcu0qVxJWdgHh7XIWZ6X7DPZ_uAeAWo3uMkHzIGDGhIMIMao4ElGdggbkkUCOpz8tNlYCa0M9LcJXzASGkhcILcPcaBxf7fhrt2H756rGL39MxVzFUm65rj2PrqlW393Wy-RpcBNtlf_OXS_DxtHlfP8Pd2_ZlvdpBR7kaYcO5dJhipqXFQTfSIx9qaxkT2ClaK6GkaISWTjHrOCe1LS0aCNFe6tDQJcDzX5dizskHc0xtb9OPwcicbM1sa4qtOdkaWRgyM7l0h71P5hCnNJSZ_0C_A49XlA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Rogalski, D.</creator><creator>Sierra, S. J.</creator><creator>Stafford, J. T.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Noncommutative Blowups of Elliptic Algebras</title><author>Rogalski, D. ; Sierra, S. J. ; Stafford, J. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Non-associative Rings and Algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogalski, D.</creatorcontrib><creatorcontrib>Sierra, S. J.</creatorcontrib><creatorcontrib>Stafford, J. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogalski, D.</au><au>Sierra, S. J.</au><au>Stafford, J. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncommutative Blowups of Elliptic Algebras</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>18</volume><issue>2</issue><spage>491</spage><epage>529</epage><pages>491-529</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let
T
be an elliptic algebra (meaning that, for some central element ∈
T
1
,
T
/
g
T
is a twisted homogeneous coordinate ring of an elliptic curve
E
at an infinite order automorphism). Given an effective divisor
d
on
E
whose degree is not too big, we construct a blowup
T
(
d
) of
T
at
d
and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of
T
(
d
) is quite rigid. Our results generalise those of the first author in Rogalski (Advances Math.
226
, 1433–1473,
2011
). In the companion paper Rogalski et al. (
2013
), we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-014-9506-7</doi><tpages>39</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-923X |
ispartof | Algebras and representation theory, 2015-04, Vol.18 (2), p.491-529 |
issn | 1386-923X 1572-9079 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10468_014_9506_7 |
source | Springer Nature |
subjects | Associative Rings and Algebras Commutative Rings and Algebras Mathematics Mathematics and Statistics Non-associative Rings and Algebras |
title | Noncommutative Blowups of Elliptic Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncommutative%20Blowups%20of%20Elliptic%20Algebras&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Rogalski,%20D.&rft.date=2015-04-01&rft.volume=18&rft.issue=2&rft.spage=491&rft.epage=529&rft.pages=491-529&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-014-9506-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s10468_014_9506_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-d557c131497a1f9d7e0efbaa4461c83b86876d697c84ac552baf9d3f229e79fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |